HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bdophsi Structured version   Visualization version   GIF version

Theorem bdophsi 29083
Description: The sum of two bounded linear operators is a bounded linear operator. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
bdophsi (𝑆 +op 𝑇) ∈ BndLinOp

Proof of Theorem bdophsi
StepHypRef Expression
1 nmoptri.1 . . . 4 𝑆 ∈ BndLinOp
2 bdopln 28848 . . . 4 (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp)
31, 2ax-mp 5 . . 3 𝑆 ∈ LinOp
4 nmoptri.2 . . . 4 𝑇 ∈ BndLinOp
5 bdopln 28848 . . . 4 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
64, 5ax-mp 5 . . 3 𝑇 ∈ LinOp
73, 6lnophsi 28988 . 2 (𝑆 +op 𝑇) ∈ LinOp
8 bdopf 28849 . . . . . 6 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
91, 8ax-mp 5 . . . . 5 𝑆: ℋ⟶ ℋ
10 bdopf 28849 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
114, 10ax-mp 5 . . . . 5 𝑇: ℋ⟶ ℋ
129, 11hoaddcli 28755 . . . 4 (𝑆 +op 𝑇): ℋ⟶ ℋ
13 nmopxr 28853 . . . 4 ((𝑆 +op 𝑇): ℋ⟶ ℋ → (normop‘(𝑆 +op 𝑇)) ∈ ℝ*)
1412, 13ax-mp 5 . . 3 (normop‘(𝑆 +op 𝑇)) ∈ ℝ*
15 nmopre 28857 . . . . 5 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
161, 15ax-mp 5 . . . 4 (normop𝑆) ∈ ℝ
17 nmopre 28857 . . . . 5 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
184, 17ax-mp 5 . . . 4 (normop𝑇) ∈ ℝ
1916, 18readdcli 10091 . . 3 ((normop𝑆) + (normop𝑇)) ∈ ℝ
20 nmopgtmnf 28855 . . . 4 ((𝑆 +op 𝑇): ℋ⟶ ℋ → -∞ < (normop‘(𝑆 +op 𝑇)))
2112, 20ax-mp 5 . . 3 -∞ < (normop‘(𝑆 +op 𝑇))
221, 4nmoptrii 29081 . . 3 (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))
23 xrre 12038 . . 3 ((((normop‘(𝑆 +op 𝑇)) ∈ ℝ* ∧ ((normop𝑆) + (normop𝑇)) ∈ ℝ) ∧ (-∞ < (normop‘(𝑆 +op 𝑇)) ∧ (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)))) → (normop‘(𝑆 +op 𝑇)) ∈ ℝ)
2414, 19, 21, 22, 23mp4an 709 . 2 (normop‘(𝑆 +op 𝑇)) ∈ ℝ
25 elbdop2 28858 . 2 ((𝑆 +op 𝑇) ∈ BndLinOp ↔ ((𝑆 +op 𝑇) ∈ LinOp ∧ (normop‘(𝑆 +op 𝑇)) ∈ ℝ))
267, 24, 25mpbir2an 975 1 (𝑆 +op 𝑇) ∈ BndLinOp
Colors of variables: wff setvar class
Syntax hints:  wcel 2030   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690  cr 9973   + caddc 9977  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113  chil 27904   +op chos 27923  normopcnop 27930  LinOpclo 27932  BndLinOpcbo 27933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-grpo 27475  df-gid 27476  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-nmcv 27583  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-hosum 28717  df-nmop 28826  df-lnop 28828  df-bdop 28829
This theorem is referenced by:  bdophdi  29084  nmoptri2i  29086  unierri  29091
  Copyright terms: Public domain W3C validator