Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfp Structured version   Visualization version   GIF version

Theorem bfp 33954
 Description: Banach fixed point theorem, also known as contraction mapping theorem. A contraction on a complete metric space has a unique fixed point. We show existence in the lemmas, and uniqueness here - if 𝐹 has two fixed points, then the distance between them is less than 𝐾 times itself, a contradiction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
bfp (𝜑 → ∃!𝑧𝑋 (𝐹𝑧) = 𝑧)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐾(𝑧)

Proof of Theorem bfp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bfp.3 . . . 4 (𝜑𝑋 ≠ ∅)
2 n0 4074 . . . 4 (𝑋 ≠ ∅ ↔ ∃𝑤 𝑤𝑋)
31, 2sylib 208 . . 3 (𝜑 → ∃𝑤 𝑤𝑋)
4 bfp.2 . . . . 5 (𝜑𝐷 ∈ (CMet‘𝑋))
54adantr 472 . . . 4 ((𝜑𝑤𝑋) → 𝐷 ∈ (CMet‘𝑋))
61adantr 472 . . . 4 ((𝜑𝑤𝑋) → 𝑋 ≠ ∅)
7 bfp.4 . . . . 5 (𝜑𝐾 ∈ ℝ+)
87adantr 472 . . . 4 ((𝜑𝑤𝑋) → 𝐾 ∈ ℝ+)
9 bfp.5 . . . . 5 (𝜑𝐾 < 1)
109adantr 472 . . . 4 ((𝜑𝑤𝑋) → 𝐾 < 1)
11 bfp.6 . . . . 5 (𝜑𝐹:𝑋𝑋)
1211adantr 472 . . . 4 ((𝜑𝑤𝑋) → 𝐹:𝑋𝑋)
13 bfp.7 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
1413adantlr 753 . . . 4 (((𝜑𝑤𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
15 eqid 2760 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
16 simpr 479 . . . 4 ((𝜑𝑤𝑋) → 𝑤𝑋)
17 eqid 2760 . . . 4 seq1((𝐹 ∘ 1st ), (ℕ × {𝑤})) = seq1((𝐹 ∘ 1st ), (ℕ × {𝑤}))
185, 6, 8, 10, 12, 14, 15, 16, 17bfplem2 33953 . . 3 ((𝜑𝑤𝑋) → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
193, 18exlimddv 2012 . 2 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
20 oveq12 6823 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → ((𝐹𝑥)𝐷(𝐹𝑦)) = (𝑥𝐷𝑦))
2120adantl 473 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = (𝑥𝐷𝑦))
2213adantr 472 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
2321, 22eqbrtrrd 4828 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ≤ (𝐾 · (𝑥𝐷𝑦)))
24 cmetmet 23304 . . . . . . . . . . . . . 14 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
254, 24syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
2625ad2antrr 764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐷 ∈ (Met‘𝑋))
27 simplrl 819 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑥𝑋)
28 simplrr 820 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑦𝑋)
29 metcl 22358 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
3026, 27, 28, 29syl3anc 1477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ∈ ℝ)
317rpred 12085 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ)
3231ad2antrr 764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐾 ∈ ℝ)
3332, 30remulcld 10282 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝐾 · (𝑥𝐷𝑦)) ∈ ℝ)
3430, 33suble0d 10830 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))) ≤ 0 ↔ (𝑥𝐷𝑦) ≤ (𝐾 · (𝑥𝐷𝑦))))
3523, 34mpbird 247 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))) ≤ 0)
36 1cnd 10268 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 1 ∈ ℂ)
3732recnd 10280 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐾 ∈ ℂ)
3830recnd 10280 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ∈ ℂ)
3936, 37, 38subdird 10699 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) = ((1 · (𝑥𝐷𝑦)) − (𝐾 · (𝑥𝐷𝑦))))
4038mulid2d 10270 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 · (𝑥𝐷𝑦)) = (𝑥𝐷𝑦))
4140oveq1d 6829 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 · (𝑥𝐷𝑦)) − (𝐾 · (𝑥𝐷𝑦))) = ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))))
4239, 41eqtrd 2794 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) = ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))))
43 1re 10251 . . . . . . . . . . . . 13 1 ∈ ℝ
44 resubcl 10557 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (1 − 𝐾) ∈ ℝ)
4543, 31, 44sylancr 698 . . . . . . . . . . . 12 (𝜑 → (1 − 𝐾) ∈ ℝ)
4645ad2antrr 764 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 − 𝐾) ∈ ℝ)
4746recnd 10280 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 − 𝐾) ∈ ℂ)
4847mul01d 10447 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · 0) = 0)
4935, 42, 483brtr4d 4836 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0))
50 0red 10253 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 ∈ ℝ)
51 posdif 10733 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 < 1 ↔ 0 < (1 − 𝐾)))
5231, 43, 51sylancl 697 . . . . . . . . . . 11 (𝜑 → (𝐾 < 1 ↔ 0 < (1 − 𝐾)))
539, 52mpbid 222 . . . . . . . . . 10 (𝜑 → 0 < (1 − 𝐾))
5453ad2antrr 764 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 < (1 − 𝐾))
55 lemul2 11088 . . . . . . . . 9 (((𝑥𝐷𝑦) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((1 − 𝐾) ∈ ℝ ∧ 0 < (1 − 𝐾))) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0)))
5630, 50, 46, 54, 55syl112anc 1481 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0)))
5749, 56mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ≤ 0)
58 metge0 22371 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
5926, 27, 28, 58syl3anc 1477 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 ≤ (𝑥𝐷𝑦))
60 0re 10252 . . . . . . . 8 0 ∈ ℝ
61 letri3 10335 . . . . . . . 8 (((𝑥𝐷𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
6230, 60, 61sylancl 697 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
6357, 59, 62mpbir2and 995 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) = 0)
64 meteq0 22365 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6526, 27, 28, 64syl3anc 1477 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6663, 65mpbid 222 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑥 = 𝑦)
6766ex 449 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦))
6867ralrimivva 3109 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦))
69 fveq2 6353 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
70 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
7169, 70eqeq12d 2775 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑧) = 𝑧))
7271anbi1d 743 . . . . . 6 (𝑥 = 𝑧 → (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) ↔ ((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦)))
73 equequ1 2107 . . . . . 6 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
7472, 73imbi12d 333 . . . . 5 (𝑥 = 𝑧 → ((((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
7574ralbidv 3124 . . . 4 (𝑥 = 𝑧 → (∀𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
7675cbvralv 3310 . . 3 (∀𝑥𝑋𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦))
7768, 76sylib 208 . 2 (𝜑 → ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦))
78 fveq2 6353 . . . 4 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
79 id 22 . . . 4 (𝑧 = 𝑦𝑧 = 𝑦)
8078, 79eqeq12d 2775 . . 3 (𝑧 = 𝑦 → ((𝐹𝑧) = 𝑧 ↔ (𝐹𝑦) = 𝑦))
8180reu4 3541 . 2 (∃!𝑧𝑋 (𝐹𝑧) = 𝑧 ↔ (∃𝑧𝑋 (𝐹𝑧) = 𝑧 ∧ ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
8219, 77, 81sylanbrc 701 1 (𝜑 → ∃!𝑧𝑋 (𝐹𝑧) = 𝑧)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  ∃wrex 3051  ∃!wreu 3052  ∅c0 4058  {csn 4321   class class class wbr 4804   × cxp 5264   ∘ ccom 5270  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814  1st c1st 7332  ℝcr 10147  0cc0 10148  1c1 10149   · cmul 10153   < clt 10286   ≤ cle 10287   − cmin 10478  ℕcn 11232  ℝ+crp 12045  seqcseq 13015  Metcme 19954  MetOpencmopn 19958  CMetcms 23272 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-rlim 14439  df-sum 14636  df-rest 16305  df-topgen 16326  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-top 20921  df-topon 20938  df-bases 20972  df-ntr 21046  df-nei 21124  df-lm 21255  df-haus 21341  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-cfil 23273  df-cau 23274  df-cmet 23275 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator