Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfplem2 Structured version   Visualization version   GIF version

Theorem bfplem2 35105
Description: Lemma for bfp 35106. Using the point found in bfplem1 35104, we show that this convergent point is a fixed point of 𝐹. Since for any positive 𝑥, the sequence 𝐺 is in 𝐵(𝑥 / 2, 𝑃) for all 𝑘 ∈ (ℤ𝑗) (where 𝑃 = ((⇝𝑡𝐽)‘𝐺)), we have 𝐷(𝐺(𝑗 + 1), 𝐹(𝑃)) ≤ 𝐷(𝐺(𝑗), 𝑃) < 𝑥 / 2 and 𝐷(𝐺(𝑗 + 1), 𝑃) < 𝑥 / 2, so 𝐹(𝑃) is in every neighborhood of 𝑃 and 𝑃 is a fixed point of 𝐹. (Contributed by Jeff Madsen, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
bfp.8 𝐽 = (MetOpen‘𝐷)
bfp.9 (𝜑𝐴𝑋)
bfp.10 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
Assertion
Ref Expression
bfplem2 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝐺,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐾(𝑧)

Proof of Theorem bfplem2
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bfp.2 . . . . 5 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 23892 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 22947 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
5 bfp.8 . . . . 5 𝐽 = (MetOpen‘𝐷)
65mopntopon 23052 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
73, 4, 63syl 18 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 bfp.3 . . . 4 (𝜑𝑋 ≠ ∅)
9 bfp.4 . . . 4 (𝜑𝐾 ∈ ℝ+)
10 bfp.5 . . . 4 (𝜑𝐾 < 1)
11 bfp.6 . . . 4 (𝜑𝐹:𝑋𝑋)
12 bfp.7 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
13 bfp.9 . . . 4 (𝜑𝐴𝑋)
14 bfp.10 . . . 4 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
151, 8, 9, 10, 11, 12, 5, 13, 14bfplem1 35104 . . 3 (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
16 lmcl 21908 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺)) → ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)
177, 15, 16syl2anc 586 . 2 (𝜑 → ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)
183adantr 483 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
1918, 4syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
20 nnuz 12284 . . . . . . . . . 10 ℕ = (ℤ‘1)
21 1zzd 12016 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℤ)
22 eqidd 2825 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐺𝑘))
2315adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
24 rphalfcl 12419 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
2524adantl 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
265, 19, 20, 21, 22, 23, 25lmmcvg 23867 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
27 simpr 487 . . . . . . . . . . . 12 (((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2))
2827ralimi 3163 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2))
29 nnz 12007 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
3029adantl 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
31 uzid 12261 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
32 fveq2 6673 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
3332oveq1d 7174 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) = ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
3433breq1d 5079 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ↔ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
3534rspcv 3621 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
3630, 31, 353syl 18 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
3730, 31syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ𝑗))
38 peano2uz 12304 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
39 fveq2 6673 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑗 + 1) → (𝐺𝑘) = (𝐺‘(𝑗 + 1)))
4039oveq1d 7174 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑗 + 1) → ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) = ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)))
4140breq1d 5079 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑗 + 1) → (((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ↔ ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
4241rspcv 3621 . . . . . . . . . . . . . . 15 ((𝑗 + 1) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
4337, 38, 423syl 18 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
44 1zzd 12016 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℤ)
4520, 14, 44, 13, 11algrp1 15921 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (𝐹‘(𝐺𝑗)))
4645adantlr 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (𝐹‘(𝐺𝑗)))
4746oveq1d 7174 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) = ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)))
4847breq1d 5079 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ↔ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
4943, 48sylibd 241 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
5036, 49jcad 515 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2))))
513ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
5220, 14, 44, 13, 11algrf 15920 . . . . . . . . . . . . . . . 16 (𝜑𝐺:ℕ⟶𝑋)
5352adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 𝐺:ℕ⟶𝑋)
5453ffvelrnda 6854 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ 𝑋)
5517ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)
56 metcl 22945 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
5751, 54, 55, 56syl3anc 1367 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
5811ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐹:𝑋𝑋)
5958, 54ffvelrnd 6855 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝐺𝑗)) ∈ 𝑋)
60 metcl 22945 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺𝑗)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
6151, 59, 55, 60syl3anc 1367 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
62 rpre 12400 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
6362ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑥 ∈ ℝ)
64 lt2halves 11875 . . . . . . . . . . . . 13 ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥))
6557, 61, 63, 64syl3anc 1367 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥))
6611, 17ffvelrnd 6855 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋)
67 metcl 22945 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
683, 66, 17, 67syl3anc 1367 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
6968ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
7058, 55ffvelrnd 6855 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋)
71 metcl 22945 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺𝑗)) ∈ 𝑋 ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
7251, 59, 70, 71syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
7372, 61readdcld 10673 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
7457, 61readdcld 10673 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
75 mettri2 22954 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ ((𝐹‘(𝐺𝑗)) ∈ 𝑋 ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
7651, 59, 70, 55, 75syl13anc 1368 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
779rpred 12434 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℝ)
7877ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℝ)
7978, 57remulcld 10674 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
8054, 55jca 514 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋))
8112ralrimivva 3194 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
8281ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
83 fveq2 6673 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝐺𝑗) → (𝐹𝑥) = (𝐹‘(𝐺𝑗)))
8483oveq1d 7174 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝐺𝑗) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)))
85 oveq1 7166 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝐺𝑗) → (𝑥𝐷𝑦) = ((𝐺𝑗)𝐷𝑦))
8685oveq2d 7175 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝐺𝑗) → (𝐾 · (𝑥𝐷𝑦)) = (𝐾 · ((𝐺𝑗)𝐷𝑦)))
8784, 86breq12d 5082 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝐺𝑗) → (((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑗)𝐷𝑦))))
88 fveq2 6673 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → (𝐹𝑦) = (𝐹‘((⇝𝑡𝐽)‘𝐺)))
8988oveq2d 7175 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → ((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))))
90 oveq2 7167 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → ((𝐺𝑗)𝐷𝑦) = ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
9190oveq2d 7175 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → (𝐾 · ((𝐺𝑗)𝐷𝑦)) = (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))))
9289, 91breq12d 5082 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → (((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑗)𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))))
9387, 92rspc2v 3636 . . . . . . . . . . . . . . . . 17 (((𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))))
9480, 82, 93sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))))
95 1red 10645 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 1 ∈ ℝ)
96 metge0 22958 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → 0 ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
9751, 54, 55, 96syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 0 ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
98 1re 10644 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
99 ltle 10732 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 < 1 → 𝐾 ≤ 1))
10077, 98, 99sylancl 588 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 < 1 → 𝐾 ≤ 1))
10110, 100mpd 15 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ≤ 1)
102101ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐾 ≤ 1)
10378, 95, 57, 97, 102lemul1ad 11582 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) ≤ (1 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))))
10457recnd 10672 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℂ)
105104mulid2d 10662 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (1 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) = ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
106103, 105breqtrd 5095 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
10772, 79, 57, 94, 106letrd 10800 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
10872, 57, 61, 107leadd1dd 11257 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
10969, 73, 74, 76, 108letrd 10800 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
110 lelttr 10734 . . . . . . . . . . . . . 14 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∧ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11169, 74, 63, 110syl3anc 1367 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∧ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
112109, 111mpand 693 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11350, 65, 1123syld 60 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11428, 113syl5 34 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
115114rexlimdva 3287 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11626, 115mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥)
117 ltle 10732 . . . . . . . . 9 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 𝑥))
11868, 62, 117syl2an 597 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 𝑥))
119116, 118mpd 15 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 𝑥)
12062adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
121120recnd 10672 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
122121addid2d 10844 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (0 + 𝑥) = 𝑥)
123119, 122breqtrrd 5097 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥))
124123ralrimiva 3185 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥))
125 0re 10646 . . . . . 6 0 ∈ ℝ
126 alrple 12602 . . . . . 6 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥)))
12768, 125, 126sylancl 588 . . . . 5 (𝜑 → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥)))
128124, 127mpbird 259 . . . 4 (𝜑 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0)
129 metge0 22958 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))
1303, 66, 17, 129syl3anc 1367 . . . 4 (𝜑 → 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))
131 letri3 10729 . . . . 5 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ∧ 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))))
13268, 125, 131sylancl 588 . . . 4 (𝜑 → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ∧ 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))))
133128, 130, 132mpbir2and 711 . . 3 (𝜑 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0)
134 meteq0 22952 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)))
1353, 66, 17, 134syl3anc 1367 . . 3 (𝜑 → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)))
136133, 135mpbid 234 . 2 (𝜑 → (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺))
137 fveq2 6673 . . . 4 (𝑧 = ((⇝𝑡𝐽)‘𝐺) → (𝐹𝑧) = (𝐹‘((⇝𝑡𝐽)‘𝐺)))
138 id 22 . . . 4 (𝑧 = ((⇝𝑡𝐽)‘𝐺) → 𝑧 = ((⇝𝑡𝐽)‘𝐺))
139137, 138eqeq12d 2840 . . 3 (𝑧 = ((⇝𝑡𝐽)‘𝐺) → ((𝐹𝑧) = 𝑧 ↔ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)))
140139rspcev 3626 . 2 ((((⇝𝑡𝐽)‘𝐺) ∈ 𝑋 ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)) → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
14117, 136, 140syl2anc 586 1 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  c0 4294  {csn 4570   class class class wbr 5069   × cxp 5556  ccom 5562  wf 6354  cfv 6358  (class class class)co 7159  1st c1st 7690  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679   / cdiv 11300  cn 11641  2c2 11695  cz 11984  cuz 12246  +crp 12392  seqcseq 13372  ∞Metcxmet 20533  Metcmet 20534  MetOpencmopn 20538  TopOnctopon 21521  𝑡clm 21837  CMetccmet 23860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-rest 16699  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-top 21505  df-topon 21522  df-bases 21557  df-ntr 21631  df-nei 21709  df-lm 21840  df-haus 21926  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-cfil 23861  df-cau 23862  df-cmet 23863
This theorem is referenced by:  bfp  35106
  Copyright terms: Public domain W3C validator