Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfplem2 Structured version   Visualization version   GIF version

Theorem bfplem2 32591
Description: Lemma for bfp 32592. Using the point found in bfplem1 32590, we show that this convergent point is a fixed point of 𝐹. Since for any positive 𝑥, the sequence 𝐺 is in 𝐵(𝑥 / 2, 𝑃) for all 𝑘 ∈ (ℤ𝑗) (where 𝑃 = ((⇝𝑡𝐽)‘𝐺)), we have 𝐷(𝐺(𝑗 + 1), 𝐹(𝑃)) ≤ 𝐷(𝐺(𝑗), 𝑃) < 𝑥 / 2 and 𝐷(𝐺(𝑗 + 1), 𝑃) < 𝑥 / 2, so 𝐹(𝑃) is in every neighborhood of 𝑃 and 𝑃 is a fixed point of 𝐹. (Contributed by Jeff Madsen, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
bfp.8 𝐽 = (MetOpen‘𝐷)
bfp.9 (𝜑𝐴𝑋)
bfp.10 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
Assertion
Ref Expression
bfplem2 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝐺,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐾(𝑧)

Proof of Theorem bfplem2
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bfp.2 . . . . 5 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 22806 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 21886 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
5 bfp.8 . . . . 5 𝐽 = (MetOpen‘𝐷)
65mopntopon 21991 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
73, 4, 63syl 18 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 bfp.3 . . . 4 (𝜑𝑋 ≠ ∅)
9 bfp.4 . . . 4 (𝜑𝐾 ∈ ℝ+)
10 bfp.5 . . . 4 (𝜑𝐾 < 1)
11 bfp.6 . . . 4 (𝜑𝐹:𝑋𝑋)
12 bfp.7 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
13 bfp.9 . . . 4 (𝜑𝐴𝑋)
14 bfp.10 . . . 4 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
151, 8, 9, 10, 11, 12, 5, 13, 14bfplem1 32590 . . 3 (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
16 lmcl 20849 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺)) → ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)
177, 15, 16syl2anc 690 . 2 (𝜑 → ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)
183adantr 479 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
1918, 4syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
20 nnuz 11551 . . . . . . . . . 10 ℕ = (ℤ‘1)
21 1zzd 11237 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℤ)
22 eqidd 2606 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐺𝑘))
2315adantr 479 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
24 rphalfcl 11686 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
2524adantl 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
265, 19, 20, 21, 22, 23, 25lmmcvg 22781 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
27 simpr 475 . . . . . . . . . . . 12 (((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2))
2827ralimi 2931 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2))
29 nnz 11228 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
3029adantl 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
31 uzid 11530 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
32 fveq2 6084 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
3332oveq1d 6538 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) = ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
3433breq1d 4583 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ↔ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
3534rspcv 3273 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
3630, 31, 353syl 18 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
3730, 31syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ𝑗))
38 peano2uz 11569 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
39 fveq2 6084 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑗 + 1) → (𝐺𝑘) = (𝐺‘(𝑗 + 1)))
4039oveq1d 6538 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑗 + 1) → ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) = ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)))
4140breq1d 4583 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑗 + 1) → (((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ↔ ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
4241rspcv 3273 . . . . . . . . . . . . . . 15 ((𝑗 + 1) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
4337, 38, 423syl 18 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
44 1zzd 11237 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℤ)
4520, 14, 44, 13, 11algrp1 15067 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (𝐹‘(𝐺𝑗)))
4645adantlr 746 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (𝐹‘(𝐺𝑗)))
4746oveq1d 6538 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) = ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)))
4847breq1d 4583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ↔ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
4943, 48sylibd 227 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
5036, 49jcad 553 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2))))
513ad2antrr 757 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
5220, 14, 44, 13, 11algrf 15066 . . . . . . . . . . . . . . . 16 (𝜑𝐺:ℕ⟶𝑋)
5352adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 𝐺:ℕ⟶𝑋)
5453ffvelrnda 6248 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ 𝑋)
5517ad2antrr 757 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)
56 metcl 21884 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
5751, 54, 55, 56syl3anc 1317 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
5811ad2antrr 757 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐹:𝑋𝑋)
5958, 54ffvelrnd 6249 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝐺𝑗)) ∈ 𝑋)
60 metcl 21884 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺𝑗)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
6151, 59, 55, 60syl3anc 1317 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
62 rpre 11667 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
6362ad2antlr 758 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑥 ∈ ℝ)
64 lt2halves 11110 . . . . . . . . . . . . 13 ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥))
6557, 61, 63, 64syl3anc 1317 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥))
6611, 17ffvelrnd 6249 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋)
67 metcl 21884 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
683, 66, 17, 67syl3anc 1317 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
6968ad2antrr 757 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
7058, 55ffvelrnd 6249 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋)
71 metcl 21884 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺𝑗)) ∈ 𝑋 ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
7251, 59, 70, 71syl3anc 1317 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
7372, 61readdcld 9921 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
7457, 61readdcld 9921 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
75 mettri2 21893 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ ((𝐹‘(𝐺𝑗)) ∈ 𝑋 ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
7651, 59, 70, 55, 75syl13anc 1319 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
779rpred 11700 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℝ)
7877ad2antrr 757 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℝ)
7978, 57remulcld 9922 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
8054, 55jca 552 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋))
8112ralrimivva 2949 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
8281ad2antrr 757 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
83 fveq2 6084 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝐺𝑗) → (𝐹𝑥) = (𝐹‘(𝐺𝑗)))
8483oveq1d 6538 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝐺𝑗) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)))
85 oveq1 6530 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝐺𝑗) → (𝑥𝐷𝑦) = ((𝐺𝑗)𝐷𝑦))
8685oveq2d 6539 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝐺𝑗) → (𝐾 · (𝑥𝐷𝑦)) = (𝐾 · ((𝐺𝑗)𝐷𝑦)))
8784, 86breq12d 4586 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝐺𝑗) → (((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑗)𝐷𝑦))))
88 fveq2 6084 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → (𝐹𝑦) = (𝐹‘((⇝𝑡𝐽)‘𝐺)))
8988oveq2d 6539 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → ((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))))
90 oveq2 6531 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → ((𝐺𝑗)𝐷𝑦) = ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
9190oveq2d 6539 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → (𝐾 · ((𝐺𝑗)𝐷𝑦)) = (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))))
9289, 91breq12d 4586 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → (((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑗)𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))))
9387, 92rspc2v 3288 . . . . . . . . . . . . . . . . 17 (((𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))))
9480, 82, 93sylc 62 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))))
95 1red 9907 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 1 ∈ ℝ)
96 metge0 21897 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → 0 ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
9751, 54, 55, 96syl3anc 1317 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 0 ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
98 1re 9891 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
99 ltle 9973 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 < 1 → 𝐾 ≤ 1))
10077, 98, 99sylancl 692 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 < 1 → 𝐾 ≤ 1))
10110, 100mpd 15 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ≤ 1)
102101ad2antrr 757 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐾 ≤ 1)
10378, 95, 57, 97, 102lemul1ad 10808 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) ≤ (1 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))))
10457recnd 9920 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℂ)
105104mulid2d 9910 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (1 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) = ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
106103, 105breqtrd 4599 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
10772, 79, 57, 94, 106letrd 10041 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
10872, 57, 61, 107leadd1dd 10486 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
10969, 73, 74, 76, 108letrd 10041 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
110 lelttr 9975 . . . . . . . . . . . . . 14 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∧ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11169, 74, 63, 110syl3anc 1317 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∧ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
112109, 111mpand 706 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11350, 65, 1123syld 57 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11428, 113syl5 33 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
115114rexlimdva 3008 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11626, 115mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥)
117 ltle 9973 . . . . . . . . 9 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 𝑥))
11868, 62, 117syl2an 492 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 𝑥))
119116, 118mpd 15 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 𝑥)
12062adantl 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
121120recnd 9920 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
122121addid2d 10084 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (0 + 𝑥) = 𝑥)
123119, 122breqtrrd 4601 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥))
124123ralrimiva 2944 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥))
125 0re 9892 . . . . . 6 0 ∈ ℝ
126 alrple 11866 . . . . . 6 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥)))
12768, 125, 126sylancl 692 . . . . 5 (𝜑 → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥)))
128124, 127mpbird 245 . . . 4 (𝜑 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0)
129 metge0 21897 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))
1303, 66, 17, 129syl3anc 1317 . . . 4 (𝜑 → 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))
131 letri3 9970 . . . . 5 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ∧ 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))))
13268, 125, 131sylancl 692 . . . 4 (𝜑 → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ∧ 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))))
133128, 130, 132mpbir2and 958 . . 3 (𝜑 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0)
134 meteq0 21891 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)))
1353, 66, 17, 134syl3anc 1317 . . 3 (𝜑 → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)))
136133, 135mpbid 220 . 2 (𝜑 → (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺))
137 fveq2 6084 . . . 4 (𝑧 = ((⇝𝑡𝐽)‘𝐺) → (𝐹𝑧) = (𝐹‘((⇝𝑡𝐽)‘𝐺)))
138 id 22 . . . 4 (𝑧 = ((⇝𝑡𝐽)‘𝐺) → 𝑧 = ((⇝𝑡𝐽)‘𝐺))
139137, 138eqeq12d 2620 . . 3 (𝑧 = ((⇝𝑡𝐽)‘𝐺) → ((𝐹𝑧) = 𝑧 ↔ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)))
140139rspcev 3277 . 2 ((((⇝𝑡𝐽)‘𝐺) ∈ 𝑋 ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)) → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
14117, 136, 140syl2anc 690 1 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wne 2775  wral 2891  wrex 2892  c0 3869  {csn 4120   class class class wbr 4573   × cxp 5022  ccom 5028  wf 5782  cfv 5786  (class class class)co 6523  1st c1st 7030  cr 9787  0cc0 9788  1c1 9789   + caddc 9791   · cmul 9793   < clt 9926  cle 9927   / cdiv 10529  cn 10863  2c2 10913  cz 11206  cuz 11515  +crp 11660  seqcseq 12614  ∞Metcxmt 19494  Metcme 19495  MetOpencmopn 19499  TopOnctopon 20456  𝑡clm 20778  CMetcms 22774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-map 7719  df-pm 7720  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-q 11617  df-rp 11661  df-xneg 11774  df-xadd 11775  df-xmul 11776  df-ico 12004  df-icc 12005  df-fz 12149  df-fzo 12286  df-fl 12406  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-rlim 14010  df-sum 14207  df-rest 15848  df-topgen 15869  df-psmet 19501  df-xmet 19502  df-met 19503  df-bl 19504  df-mopn 19505  df-fbas 19506  df-fg 19507  df-top 20459  df-bases 20460  df-topon 20461  df-ntr 20572  df-nei 20650  df-lm 20781  df-haus 20867  df-fil 21398  df-fm 21490  df-flim 21491  df-flf 21492  df-cfil 22775  df-cau 22776  df-cmet 22777
This theorem is referenced by:  bfp  32592
  Copyright terms: Public domain W3C validator