Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbnnsum3prm Structured version   Visualization version   GIF version

Theorem bgoldbnnsum3prm 41007
Description: If the binary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 3 primes, showing that Schnirelmann's constant would be equal to 3. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
bgoldbnnsum3prm (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑘,𝑚,𝑑,𝑛

Proof of Theorem bgoldbnnsum3prm
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 2z 11361 . . . . . . 7 2 ∈ ℤ
2 9nn 11144 . . . . . . . 8 9 ∈ ℕ
32nnzi 11353 . . . . . . 7 9 ∈ ℤ
4 2re 11042 . . . . . . . 8 2 ∈ ℝ
5 9re 11059 . . . . . . . 8 9 ∈ ℝ
6 2lt9 11180 . . . . . . . 8 2 < 9
74, 5, 6ltleii 10112 . . . . . . 7 2 ≤ 9
8 eluz2 11645 . . . . . . 7 (9 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9))
91, 3, 7, 8mpbir3an 1242 . . . . . 6 9 ∈ (ℤ‘2)
10 fzouzsplit 12452 . . . . . . 7 (9 ∈ (ℤ‘2) → (ℤ‘2) = ((2..^9) ∪ (ℤ‘9)))
1110eleq2d 2684 . . . . . 6 (9 ∈ (ℤ‘2) → (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9))))
129, 11ax-mp 5 . . . . 5 (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9)))
13 elun 3736 . . . . 5 (𝑛 ∈ ((2..^9) ∪ (ℤ‘9)) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
1412, 13bitri 264 . . . 4 (𝑛 ∈ (ℤ‘2) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
15 elfzo2 12422 . . . . . . . 8 (𝑛 ∈ (2..^9) ↔ (𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9))
16 simp1 1059 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ∈ (ℤ‘2))
17 df-9 11038 . . . . . . . . . . . 12 9 = (8 + 1)
1817breq2i 4626 . . . . . . . . . . 11 (𝑛 < 9 ↔ 𝑛 < (8 + 1))
19 eluz2nn 11678 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
20 8nn 11143 . . . . . . . . . . . . . . 15 8 ∈ ℕ
2119, 20jctir 560 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘2) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
2221adantr 481 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
23 nnleltp1 11384 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 8 ∈ ℕ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2422, 23syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2524biimprd 238 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < (8 + 1) → 𝑛 ≤ 8))
2618, 25syl5bi 232 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < 9 → 𝑛 ≤ 8))
27263impia 1258 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ≤ 8)
2816, 27jca 554 . . . . . . . 8 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
2915, 28sylbi 207 . . . . . . 7 (𝑛 ∈ (2..^9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
30 nnsum3primesle9 40997 . . . . . . 7 ((𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3129, 30syl 17 . . . . . 6 (𝑛 ∈ (2..^9) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3231a1d 25 . . . . 5 (𝑛 ∈ (2..^9) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
33 breq2 4622 . . . . . . . . . . 11 (𝑚 = 𝑛 → (4 < 𝑚 ↔ 4 < 𝑛))
34 eleq1 2686 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 ∈ GoldbachEven ↔ 𝑛 ∈ GoldbachEven ))
3533, 34imbi12d 334 . . . . . . . . . 10 (𝑚 = 𝑛 → ((4 < 𝑚𝑚 ∈ GoldbachEven ) ↔ (4 < 𝑛𝑛 ∈ GoldbachEven )))
3635rspcv 3294 . . . . . . . . 9 (𝑛 ∈ Even → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → (4 < 𝑛𝑛 ∈ GoldbachEven )))
37 4re 11049 . . . . . . . . . . . . . . 15 4 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘9) → 4 ∈ ℝ)
395a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘9) → 9 ∈ ℝ)
40 eluzelre 11650 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ ℝ)
4138, 39, 403jca 1240 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ‘9) → (4 ∈ ℝ ∧ 9 ∈ ℝ ∧ 𝑛 ∈ ℝ))
4241adantl 482 . . . . . . . . . . . 12 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → (4 ∈ ℝ ∧ 9 ∈ ℝ ∧ 𝑛 ∈ ℝ))
43 eluzle 11652 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘9) → 9 ≤ 𝑛)
4443adantl 482 . . . . . . . . . . . . 13 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → 9 ≤ 𝑛)
45 4lt9 11178 . . . . . . . . . . . . 13 4 < 9
4644, 45jctil 559 . . . . . . . . . . . 12 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → (4 < 9 ∧ 9 ≤ 𝑛))
47 ltletr 10081 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 9 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((4 < 9 ∧ 9 ≤ 𝑛) → 4 < 𝑛))
4842, 46, 47sylc 65 . . . . . . . . . . 11 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → 4 < 𝑛)
49 pm2.27 42 . . . . . . . . . . 11 (4 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ))
5048, 49syl 17 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ))
5150ex 450 . . . . . . . . 9 (𝑛 ∈ Even → (𝑛 ∈ (ℤ‘9) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven )))
5236, 51syl5d 73 . . . . . . . 8 (𝑛 ∈ Even → (𝑛 ∈ (ℤ‘9) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven )))
5352impcom 446 . . . . . . 7 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ))
54 nnsum3primesgbe 40995 . . . . . . 7 (𝑛 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
5553, 54syl6 35 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
56 3nn 11138 . . . . . . . . . 10 3 ∈ ℕ
5756a1i 11 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOdd )) → 3 ∈ ℕ)
58 oveq2 6618 . . . . . . . . . . . 12 (𝑑 = 3 → (1...𝑑) = (1...3))
5958oveq2d 6626 . . . . . . . . . . 11 (𝑑 = 3 → (ℙ ↑𝑚 (1...𝑑)) = (ℙ ↑𝑚 (1...3)))
60 breq1 4621 . . . . . . . . . . . 12 (𝑑 = 3 → (𝑑 ≤ 3 ↔ 3 ≤ 3))
6158sumeq1d 14373 . . . . . . . . . . . . 13 (𝑑 = 3 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ (1...3)(𝑓𝑘))
6261eqeq2d 2631 . . . . . . . . . . . 12 (𝑑 = 3 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
6360, 62anbi12d 746 . . . . . . . . . . 11 (𝑑 = 3 → ((𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6459, 63rexeqbidv 3145 . . . . . . . . . 10 (𝑑 = 3 → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))(3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6564adantl 482 . . . . . . . . 9 ((((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOdd )) ∧ 𝑑 = 3) → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))(3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
66 3re 11046 . . . . . . . . . . . 12 3 ∈ ℝ
6766leidi 10514 . . . . . . . . . . 11 3 ≤ 3
6867a1i 11 . . . . . . . . . 10 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOdd )) → 3 ≤ 3)
69 6nn 11141 . . . . . . . . . . . . . 14 6 ∈ ℕ
7069nnzi 11353 . . . . . . . . . . . . 13 6 ∈ ℤ
71 6re 11053 . . . . . . . . . . . . . 14 6 ∈ ℝ
72 6lt9 11176 . . . . . . . . . . . . . 14 6 < 9
7371, 5, 72ltleii 10112 . . . . . . . . . . . . 13 6 ≤ 9
74 eluzuzle 11648 . . . . . . . . . . . . 13 ((6 ∈ ℤ ∧ 6 ≤ 9) → (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6)))
7570, 73, 74mp2an 707 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6))
7675anim1i 591 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ))
77 nnsum4primesodd 40999 . . . . . . . . . . 11 (∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOdd ) → ((𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7876, 77mpan9 486 . . . . . . . . . 10 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOdd )) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
79 r19.42v 3085 . . . . . . . . . 10 (∃𝑓 ∈ (ℙ ↑𝑚 (1...3))(3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)) ↔ (3 ≤ 3 ∧ ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
8068, 78, 79sylanbrc 697 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOdd )) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))(3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
8157, 65, 80rspcedvd 3305 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOdd )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
8281expcom 451 . . . . . . 7 (∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOdd ) → ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
83 bgoldbwt 40986 . . . . . . 7 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOdd ))
8482, 83syl11 33 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
85 eluzelz 11649 . . . . . . 7 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ ℤ)
86 zeoALTV 40906 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8785, 86syl 17 . . . . . 6 (𝑛 ∈ (ℤ‘9) → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8855, 84, 87mpjaodan 826 . . . . 5 (𝑛 ∈ (ℤ‘9) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8932, 88jaoi 394 . . . 4 ((𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
9014, 89sylbi 207 . . 3 (𝑛 ∈ (ℤ‘2) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
9190impcom 446 . 2 ((∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) ∧ 𝑛 ∈ (ℤ‘2)) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
9291ralrimiva 2961 1 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  cun 3557   class class class wbr 4618  cfv 5852  (class class class)co 6610  𝑚 cmap 7809  cr 9887  1c1 9889   + caddc 9891   < clt 10026  cle 10027  cn 10972  2c2 11022  3c3 11023  4c4 11024  5c5 11025  6c6 11026  8c8 11028  9c9 11029  cz 11329  cuz 11639  ...cfz 12276  ..^cfzo 12414  Σcsu 14358  cprime 15320   Even ceven 40862   Odd codd 40863   GoldbachEven cgbe 40954   GoldbachOdd cgbo 40955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-rp 11785  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-dvds 14919  df-prm 15321  df-even 40864  df-odd 40865  df-gbe 40957  df-gbo 40958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator