MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biantr Structured version   Visualization version   GIF version

Theorem biantr 967
Description: A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
biantr (((𝜑𝜓) ∧ (𝜒𝜓)) → (𝜑𝜒))

Proof of Theorem biantr
StepHypRef Expression
1 id 22 . . 3 ((𝜒𝜓) → (𝜒𝜓))
21bibi2d 330 . 2 ((𝜒𝜓) → ((𝜑𝜒) ↔ (𝜑𝜓)))
32biimparc 502 1 (((𝜑𝜓) ∧ (𝜒𝜓)) → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-an 384
This theorem is referenced by:  bm1.1  2590  bitr3VD  37905  sbcoreleleqVD  37916  trsbcVD  37934  sbcssgVD  37940
  Copyright terms: Public domain W3C validator