MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bimsc1 Structured version   Visualization version   GIF version

Theorem bimsc1 999
Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
bimsc1 (((𝜑𝜓) ∧ (𝜒 ↔ (𝜓𝜑))) → (𝜒𝜑))

Proof of Theorem bimsc1
StepHypRef Expression
1 simpr 476 . . . 4 ((𝜓𝜑) → 𝜑)
2 ancr 571 . . . 4 ((𝜑𝜓) → (𝜑 → (𝜓𝜑)))
31, 2impbid2 216 . . 3 ((𝜑𝜓) → ((𝜓𝜑) ↔ 𝜑))
43bibi2d 331 . 2 ((𝜑𝜓) → ((𝜒 ↔ (𝜓𝜑)) ↔ (𝜒𝜑)))
54biimpa 500 1 (((𝜑𝜓) ∧ (𝜒 ↔ (𝜓𝜑))) → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385
This theorem is referenced by:  bm1.3ii  4817
  Copyright terms: Public domain W3C validator