MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom1dif Structured version   Visualization version   GIF version

Theorem binom1dif 14609
Description: A summation for the difference between ((𝐴 + 1)↑𝑁) and (𝐴𝑁). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
binom1dif ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝐴 + 1)↑𝑁) − (𝐴𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem binom1dif
StepHypRef Expression
1 simpl 472 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
2 ax-1cn 10032 . . . . . 6 1 ∈ ℂ
3 addcom 10260 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
41, 2, 3sylancl 695 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 + 1) = (1 + 𝐴))
54oveq1d 6705 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 1)↑𝑁) = ((1 + 𝐴)↑𝑁))
6 binom1p 14607 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴𝑘)))
7 simpr 476 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
8 nn0uz 11760 . . . . . . 7 0 = (ℤ‘0)
97, 8syl6eleq 2740 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
10 bccl2 13150 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ)
1110adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ)
1211nncnd 11074 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
13 elfznn0 12471 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
14 expcl 12918 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
151, 13, 14syl2an 493 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
1612, 15mulcld 10098 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (𝐴𝑘)) ∈ ℂ)
17 oveq2 6698 . . . . . . 7 (𝑘 = 𝑁 → (𝑁C𝑘) = (𝑁C𝑁))
18 oveq2 6698 . . . . . . 7 (𝑘 = 𝑁 → (𝐴𝑘) = (𝐴𝑁))
1917, 18oveq12d 6708 . . . . . 6 (𝑘 = 𝑁 → ((𝑁C𝑘) · (𝐴𝑘)) = ((𝑁C𝑁) · (𝐴𝑁)))
209, 16, 19fsumm1 14524 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + ((𝑁C𝑁) · (𝐴𝑁))))
21 bcnn 13139 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
2221adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑁C𝑁) = 1)
2322oveq1d 6705 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁C𝑁) · (𝐴𝑁)) = (1 · (𝐴𝑁)))
24 expcl 12918 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
2524mulid2d 10096 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1 · (𝐴𝑁)) = (𝐴𝑁))
2623, 25eqtrd 2685 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁C𝑁) · (𝐴𝑁)) = (𝐴𝑁))
2726oveq2d 6706 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + ((𝑁C𝑁) · (𝐴𝑁))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + (𝐴𝑁)))
2820, 27eqtrd 2685 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + (𝐴𝑁)))
295, 6, 283eqtrd 2689 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 1)↑𝑁) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + (𝐴𝑁)))
3029oveq1d 6705 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝐴 + 1)↑𝑁) − (𝐴𝑁)) = ((Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + (𝐴𝑁)) − (𝐴𝑁)))
31 fzfid 12812 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...(𝑁 − 1)) ∈ Fin)
32 fzssp1 12422 . . . . . . 7 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
33 nn0cn 11340 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
3433adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
35 npcan 10328 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
3634, 2, 35sylancl 695 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁 − 1) + 1) = 𝑁)
3736oveq2d 6706 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
3832, 37syl5sseq 3686 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
3938sselda 3636 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ (0...𝑁))
4039, 16syldan 486 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · (𝐴𝑘)) ∈ ℂ)
4131, 40fsumcl 14508 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) ∈ ℂ)
4241, 24pncand 10431 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + (𝐴𝑁)) − (𝐴𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)))
4330, 42eqtrd 2685 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝐴 + 1)↑𝑁) − (𝐴𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cmin 10304  cn 11058  0cn0 11330  cuz 11725  ...cfz 12364  cexp 12900  Ccbc 13129  Σcsu 14460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator