MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom3 Structured version   Visualization version   GIF version

Theorem binom3 13588
Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.)
Assertion
Ref Expression
binom3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))

Proof of Theorem binom3
StepHypRef Expression
1 df-3 11704 . . . 4 3 = (2 + 1)
21oveq2i 7170 . . 3 ((𝐴 + 𝐵)↑3) = ((𝐴 + 𝐵)↑(2 + 1))
3 addcl 10622 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
4 2nn0 11917 . . . 4 2 ∈ ℕ0
5 expp1 13439 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝐴 + 𝐵)↑(2 + 1)) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
63, 4, 5sylancl 588 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(2 + 1)) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
72, 6syl5eq 2871 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
8 sqcl 13487 . . . . 5 ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵)↑2) ∈ ℂ)
93, 8syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) ∈ ℂ)
10 simpl 485 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
11 simpr 487 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
129, 10, 11adddid 10668 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)) = ((((𝐴 + 𝐵)↑2) · 𝐴) + (((𝐴 + 𝐵)↑2) · 𝐵)))
13 binom2 13582 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
1413oveq1d 7174 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐴) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐴))
15 sqcl 13487 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
1610, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
17 2cn 11715 . . . . . . . 8 2 ∈ ℂ
18 mulcl 10624 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
19 mulcl 10624 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2017, 18, 19sylancr 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2116, 20addcld 10663 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
22 sqcl 13487 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑2) ∈ ℂ)
2311, 22syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2421, 23, 10adddird 10669 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐴) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) + ((𝐵↑2) · 𝐴)))
2516, 20, 10adddird 10669 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) = (((𝐴↑2) · 𝐴) + ((2 · (𝐴 · 𝐵)) · 𝐴)))
261oveq2i 7170 . . . . . . . . 9 (𝐴↑3) = (𝐴↑(2 + 1))
27 expp1 13439 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
2810, 4, 27sylancl 588 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
2926, 28syl5eq 2871 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) = ((𝐴↑2) · 𝐴))
30 sqval 13484 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
3110, 30syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴))
3231oveq1d 7174 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) = ((𝐴 · 𝐴) · 𝐵))
3310, 10, 11mul32d 10853 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐴) · 𝐵) = ((𝐴 · 𝐵) · 𝐴))
3432, 33eqtrd 2859 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) = ((𝐴 · 𝐵) · 𝐴))
3534oveq2d 7175 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) = (2 · ((𝐴 · 𝐵) · 𝐴)))
36 2cnd 11718 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℂ)
3736, 18, 10mulassd 10667 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · 𝐵)) · 𝐴) = (2 · ((𝐴 · 𝐵) · 𝐴)))
3835, 37eqtr4d 2862 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) = ((2 · (𝐴 · 𝐵)) · 𝐴))
3929, 38oveq12d 7177 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) = (((𝐴↑2) · 𝐴) + ((2 · (𝐴 · 𝐵)) · 𝐴)))
4025, 39eqtr4d 2862 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) = ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))))
4123, 10mulcomd 10665 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑2) · 𝐴) = (𝐴 · (𝐵↑2)))
4240, 41oveq12d 7177 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) + ((𝐵↑2) · 𝐴)) = (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))))
4314, 24, 423eqtrd 2863 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐴) = (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))))
4413oveq1d 7174 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐵) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐵))
4521, 23, 11adddird 10669 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐵) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)))
46 sqval 13484 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵))
4711, 46syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵))
4847oveq2d 7175 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) = (𝐴 · (𝐵 · 𝐵)))
4910, 11, 11mulassd 10667 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐵) = (𝐴 · (𝐵 · 𝐵)))
5048, 49eqtr4d 2862 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) = ((𝐴 · 𝐵) · 𝐵))
5150oveq2d 7175 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) = (2 · ((𝐴 · 𝐵) · 𝐵)))
5236, 18, 11mulassd 10667 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · 𝐵)) · 𝐵) = (2 · ((𝐴 · 𝐵) · 𝐵)))
5351, 52eqtr4d 2862 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) = ((2 · (𝐴 · 𝐵)) · 𝐵))
5453oveq2d 7175 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · 𝐵)) · 𝐵)))
5516, 20, 11adddird 10669 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · 𝐵)) · 𝐵)))
5654, 55eqtr4d 2862 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵))
571oveq2i 7170 . . . . . . . 8 (𝐵↑3) = (𝐵↑(2 + 1))
58 expp1 13439 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
5911, 4, 58sylancl 588 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
6057, 59syl5eq 2871 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) = ((𝐵↑2) · 𝐵))
6156, 60oveq12d 7177 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)))
6216, 11mulcld 10664 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) ∈ ℂ)
6310, 23mulcld 10664 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) ∈ ℂ)
64 mulcl 10624 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 · (𝐵↑2)) ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) ∈ ℂ)
6517, 63, 64sylancr 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) ∈ ℂ)
66 3nn0 11918 . . . . . . . 8 3 ∈ ℕ0
67 expcl 13450 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑3) ∈ ℂ)
6811, 66, 67sylancl 588 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) ∈ ℂ)
6962, 65, 68addassd 10666 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7061, 69eqtr3d 2861 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7144, 45, 703eqtrd 2863 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐵) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7243, 71oveq12d 7177 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵)↑2) · 𝐴) + (((𝐴 + 𝐵)↑2) · 𝐵)) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))) + (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
73 expcl 13450 . . . . . 6 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
7410, 66, 73sylancl 588 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) ∈ ℂ)
75 mulcl 10624 . . . . . 6 ((2 ∈ ℂ ∧ ((𝐴↑2) · 𝐵) ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
7617, 62, 75sylancr 589 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
7774, 76addcld 10663 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) ∈ ℂ)
7865, 68addcld 10663 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) ∈ ℂ)
7977, 63, 62, 78add4d 10871 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))) + (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
8012, 72, 793eqtrd 2863 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
8174, 76, 62addassd 10666 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) = ((𝐴↑3) + ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵))))
821oveq1i 7169 . . . . . . 7 (3 · ((𝐴↑2) · 𝐵)) = ((2 + 1) · ((𝐴↑2) · 𝐵))
83 1cnd 10639 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
8436, 83, 62adddird 10669 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 + 1) · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))))
8582, 84syl5eq 2871 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))))
8662mulid2d 10662 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑2) · 𝐵)) = ((𝐴↑2) · 𝐵))
8786oveq2d 7175 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))) = ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵)))
8885, 87eqtrd 2859 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵)))
8988oveq2d 7175 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) = ((𝐴↑3) + ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵))))
9081, 89eqtr4d 2862 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) = ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))))
91 1p2e3 11783 . . . . . . . 8 (1 + 2) = 3
9291oveq1i 7169 . . . . . . 7 ((1 + 2) · (𝐴 · (𝐵↑2))) = (3 · (𝐴 · (𝐵↑2)))
9383, 36, 63adddird 10669 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 2) · (𝐴 · (𝐵↑2))) = ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))))
9492, 93syl5eqr 2873 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) = ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))))
9563mulid2d 10662 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · (𝐴 · (𝐵↑2))) = (𝐴 · (𝐵↑2)))
9695oveq1d 7174 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))) = ((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))))
9794, 96eqtrd 2859 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) = ((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))))
9897oveq1d 7174 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) = (((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)))
9963, 65, 68addassd 10666 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
10098, 99eqtr2d 2860 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) = ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))
10190, 100oveq12d 7177 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
1027, 80, 1013eqtrd 2863 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  (class class class)co 7159  cc 10538  1c1 10541   + caddc 10543   · cmul 10545  2c2 11695  3c3 11696  0cn0 11900  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-exp 13433
This theorem is referenced by:  dcubic1lem  25424  mcubic  25428  binom4  25431  cu3addd  39283  3cubeslem3r  39290
  Copyright terms: Public domain W3C validator