Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemcvg Structured version   Visualization version   GIF version

Theorem binomcxplemcvg 38074
Description: Lemma for binomcxp 38077. The sum in binomcxplemnn0 38069 and its derivative (see the next theorem, binomcxplemdvsum 38075) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
Assertion
Ref Expression
binomcxplemcvg ((𝜑𝐽𝐷) → (seq0( + , (𝑆𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸𝐽)) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝑏,𝜑   𝐹,𝑏,𝑘   𝐽,𝑏,𝑘   𝑟,𝑏,𝐽   𝜑,𝑗   𝑆,𝑟
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑗,𝑘,𝑟,𝑏)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗,𝑟)   𝐽(𝑗)

Proof of Theorem binomcxplemcvg
StepHypRef Expression
1 binomcxplem.s . . 3 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 binomcxp.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
32adantr 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ)
4 simpr 477 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
53, 4bcccl 38059 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ)
6 binomcxplem.f . . . . 5 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
75, 6fmptd 6351 . . . 4 (𝜑𝐹:ℕ0⟶ℂ)
87adantr 481 . . 3 ((𝜑𝐽𝐷) → 𝐹:ℕ0⟶ℂ)
9 binomcxplem.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
10 binomcxplem.d . . . . . . 7 𝐷 = (abs “ (0[,)𝑅))
1110eleq2i 2690 . . . . . 6 (𝐽𝐷𝐽 ∈ (abs “ (0[,)𝑅)))
12 absf 14027 . . . . . . 7 abs:ℂ⟶ℝ
13 ffn 6012 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
14 elpreima 6303 . . . . . . 7 (abs Fn ℂ → (𝐽 ∈ (abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))))
1512, 13, 14mp2b 10 . . . . . 6 (𝐽 ∈ (abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))
1611, 15bitri 264 . . . . 5 (𝐽𝐷 ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))
1716simplbi 476 . . . 4 (𝐽𝐷𝐽 ∈ ℂ)
1817adantl 482 . . 3 ((𝜑𝐽𝐷) → 𝐽 ∈ ℂ)
1916simprbi 480 . . . . 5 (𝐽𝐷 → (abs‘𝐽) ∈ (0[,)𝑅))
20 0re 10000 . . . . . . 7 0 ∈ ℝ
21 ssrab2 3672 . . . . . . . . . 10 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ
22 ressxr 10043 . . . . . . . . . 10 ℝ ⊆ ℝ*
2321, 22sstri 3597 . . . . . . . . 9 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ*
24 supxrcl 12104 . . . . . . . . 9 ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
2523, 24ax-mp 5 . . . . . . . 8 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*
269, 25eqeltri 2694 . . . . . . 7 𝑅 ∈ ℝ*
27 elico2 12195 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅)))
2820, 26, 27mp2an 707 . . . . . 6 ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅))
2928simp3bi 1076 . . . . 5 ((abs‘𝐽) ∈ (0[,)𝑅) → (abs‘𝐽) < 𝑅)
3019, 29syl 17 . . . 4 (𝐽𝐷 → (abs‘𝐽) < 𝑅)
3130adantl 482 . . 3 ((𝜑𝐽𝐷) → (abs‘𝐽) < 𝑅)
321, 8, 9, 18, 31radcnvlt2 24111 . 2 ((𝜑𝐽𝐷) → seq0( + , (𝑆𝐽)) ∈ dom ⇝ )
33 binomcxplem.e . . . . . . 7 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
3433a1i 11 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))))
35 simplr 791 . . . . . . . . 9 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝐽)
3635oveq1d 6630 . . . . . . . 8 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝐽↑(𝑘 − 1)))
3736oveq2d 6631 . . . . . . 7 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))
3837mpteq2dva 4714 . . . . . 6 (((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
39 simpr 477 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → 𝐽 ∈ ℂ)
40 nnex 10986 . . . . . . . 8 ℕ ∈ V
4140mptex 6451 . . . . . . 7 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V
4241a1i 11 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V)
4334, 38, 39, 42fvmptd 6255 . . . . 5 ((𝜑𝐽 ∈ ℂ) → (𝐸𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
4417, 43sylan2 491 . . . 4 ((𝜑𝐽𝐷) → (𝐸𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
4544seqeq3d 12765 . . 3 ((𝜑𝐽𝐷) → seq1( + , (𝐸𝐽)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))))
46 eqid 2621 . . . 4 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))
471, 9, 46, 8, 18, 31dvradcnv2 38067 . . 3 ((𝜑𝐽𝐷) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))) ∈ dom ⇝ )
4845, 47eqeltrd 2698 . 2 ((𝜑𝐽𝐷) → seq1( + , (𝐸𝐽)) ∈ dom ⇝ )
4932, 48jca 554 1 ((𝜑𝐽𝐷) → (seq0( + , (𝑆𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸𝐽)) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  {crab 2912  Vcvv 3190  wss 3560   class class class wbr 4623  cmpt 4683  ccnv 5083  dom cdm 5084  cima 5087   Fn wfn 5852  wf 5853  cfv 5857  (class class class)co 6615  supcsup 8306  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901  *cxr 10033   < clt 10034  cle 10035  cmin 10226  cn 10980  0cn0 11252  +crp 11792  [,)cico 12135  seqcseq 12757  cexp 12816  abscabs 13924  cli 14165  C𝑐cbcc 38056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-seq 12758  df-exp 12817  df-fac 13017  df-hash 13074  df-shft 13757  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-sum 14367  df-prod 14580  df-fallfac 14682  df-bcc 38057
This theorem is referenced by:  binomcxplemnotnn0  38076
  Copyright terms: Public domain W3C validator