Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemcvg Structured version   Visualization version   GIF version

Theorem binomcxplemcvg 40693
Description: Lemma for binomcxp 40696. The sum in binomcxplemnn0 40688 and its derivative (see the next theorem, binomcxplemdvsum 40694) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
Assertion
Ref Expression
binomcxplemcvg ((𝜑𝐽𝐷) → (seq0( + , (𝑆𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸𝐽)) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝑏,𝜑   𝐹,𝑏,𝑘   𝐽,𝑏,𝑘   𝑟,𝑏,𝐽   𝜑,𝑗   𝑆,𝑟
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑗,𝑘,𝑟,𝑏)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗,𝑟)   𝐽(𝑗)

Proof of Theorem binomcxplemcvg
StepHypRef Expression
1 binomcxplem.s . . 3 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 binomcxp.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
32adantr 483 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ)
4 simpr 487 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
53, 4bcccl 40678 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ)
6 binomcxplem.f . . . . 5 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
75, 6fmptd 6880 . . . 4 (𝜑𝐹:ℕ0⟶ℂ)
87adantr 483 . . 3 ((𝜑𝐽𝐷) → 𝐹:ℕ0⟶ℂ)
9 binomcxplem.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
10 binomcxplem.d . . . . . . 7 𝐷 = (abs “ (0[,)𝑅))
1110eleq2i 2906 . . . . . 6 (𝐽𝐷𝐽 ∈ (abs “ (0[,)𝑅)))
12 absf 14699 . . . . . . 7 abs:ℂ⟶ℝ
13 ffn 6516 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
14 elpreima 6830 . . . . . . 7 (abs Fn ℂ → (𝐽 ∈ (abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))))
1512, 13, 14mp2b 10 . . . . . 6 (𝐽 ∈ (abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))
1611, 15bitri 277 . . . . 5 (𝐽𝐷 ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))
1716simplbi 500 . . . 4 (𝐽𝐷𝐽 ∈ ℂ)
1817adantl 484 . . 3 ((𝜑𝐽𝐷) → 𝐽 ∈ ℂ)
1916simprbi 499 . . . . 5 (𝐽𝐷 → (abs‘𝐽) ∈ (0[,)𝑅))
20 0re 10645 . . . . . . 7 0 ∈ ℝ
21 ssrab2 4058 . . . . . . . . . 10 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ
22 ressxr 10687 . . . . . . . . . 10 ℝ ⊆ ℝ*
2321, 22sstri 3978 . . . . . . . . 9 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ*
24 supxrcl 12711 . . . . . . . . 9 ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
2523, 24ax-mp 5 . . . . . . . 8 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*
269, 25eqeltri 2911 . . . . . . 7 𝑅 ∈ ℝ*
27 elico2 12803 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅)))
2820, 26, 27mp2an 690 . . . . . 6 ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅))
2928simp3bi 1143 . . . . 5 ((abs‘𝐽) ∈ (0[,)𝑅) → (abs‘𝐽) < 𝑅)
3019, 29syl 17 . . . 4 (𝐽𝐷 → (abs‘𝐽) < 𝑅)
3130adantl 484 . . 3 ((𝜑𝐽𝐷) → (abs‘𝐽) < 𝑅)
321, 8, 9, 18, 31radcnvlt2 25009 . 2 ((𝜑𝐽𝐷) → seq0( + , (𝑆𝐽)) ∈ dom ⇝ )
33 binomcxplem.e . . . . . . 7 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
3433a1i 11 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))))
35 simplr 767 . . . . . . . . 9 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝐽)
3635oveq1d 7173 . . . . . . . 8 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝐽↑(𝑘 − 1)))
3736oveq2d 7174 . . . . . . 7 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))
3837mpteq2dva 5163 . . . . . 6 (((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
39 simpr 487 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → 𝐽 ∈ ℂ)
40 nnex 11646 . . . . . . . 8 ℕ ∈ V
4140mptex 6988 . . . . . . 7 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V
4241a1i 11 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V)
4334, 38, 39, 42fvmptd 6777 . . . . 5 ((𝜑𝐽 ∈ ℂ) → (𝐸𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
4417, 43sylan2 594 . . . 4 ((𝜑𝐽𝐷) → (𝐸𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
4544seqeq3d 13380 . . 3 ((𝜑𝐽𝐷) → seq1( + , (𝐸𝐽)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))))
46 eqid 2823 . . . 4 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))
471, 9, 46, 8, 18, 31dvradcnv2 40686 . . 3 ((𝜑𝐽𝐷) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))) ∈ dom ⇝ )
4845, 47eqeltrd 2915 . 2 ((𝜑𝐽𝐷) → seq1( + , (𝐸𝐽)) ∈ dom ⇝ )
4932, 48jca 514 1 ((𝜑𝐽𝐷) → (seq0( + , (𝑆𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸𝐽)) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {crab 3144  Vcvv 3496  wss 3938   class class class wbr 5068  cmpt 5148  ccnv 5556  dom cdm 5557  cima 5560   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  supcsup 8906  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872  cn 11640  0cn0 11900  +crp 12392  [,)cico 12743  seqcseq 13372  cexp 13432  abscabs 14595  cli 14843  C𝑐cbcc 40675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-prod 15262  df-fallfac 15363  df-bcc 40676
This theorem is referenced by:  binomcxplemnotnn0  40695
  Copyright terms: Public domain W3C validator