Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemdvbinom Structured version   Visualization version   GIF version

Theorem binomcxplemdvbinom 38020
Description: Lemma for binomcxp 38024. By the power and chain rules, calculate the derivative of ((1 + 𝑏)↑𝑐-𝐶), with respect to 𝑏 in the disk of convergence 𝐷. We later multiply the derivative in the later binomcxplemdvsum 38022 by this derivative to show that ((1 + 𝑏)↑𝑐𝐶) (with a non-negated 𝐶) and the later sum, since both at 𝑏 = 0 equal one, are the same. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
Assertion
Ref Expression
binomcxplemdvbinom ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
Distinct variable groups:   𝑗,𝑘,𝜑   𝑘,𝑏,𝐶   𝐶,𝑗   𝐹,𝑏,𝑘   𝑆,𝑟   𝑟,𝑏
Allowed substitution hints:   𝜑(𝑟,𝑏)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑟)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗,𝑟)

Proof of Theorem binomcxplemdvbinom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.d . . . . 5 𝐷 = (abs “ (0[,)𝑅))
2 nfcv 2767 . . . . . 6 𝑏abs
3 nfcv 2767 . . . . . . 7 𝑏0
4 nfcv 2767 . . . . . . 7 𝑏[,)
5 binomcxplem.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
6 nfcv 2767 . . . . . . . . . . . 12 𝑏 +
7 binomcxplem.s . . . . . . . . . . . . . 14 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
8 nfmpt1 4712 . . . . . . . . . . . . . 14 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
97, 8nfcxfr 2765 . . . . . . . . . . . . 13 𝑏𝑆
10 nfcv 2767 . . . . . . . . . . . . 13 𝑏𝑟
119, 10nffv 6157 . . . . . . . . . . . 12 𝑏(𝑆𝑟)
123, 6, 11nfseq 12748 . . . . . . . . . . 11 𝑏seq0( + , (𝑆𝑟))
1312nfel1 2781 . . . . . . . . . 10 𝑏seq0( + , (𝑆𝑟)) ∈ dom ⇝
14 nfcv 2767 . . . . . . . . . 10 𝑏
1513, 14nfrab 3117 . . . . . . . . 9 𝑏{𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }
16 nfcv 2767 . . . . . . . . 9 𝑏*
17 nfcv 2767 . . . . . . . . 9 𝑏 <
1815, 16, 17nfsup 8302 . . . . . . . 8 𝑏sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
195, 18nfcxfr 2765 . . . . . . 7 𝑏𝑅
203, 4, 19nfov 6631 . . . . . 6 𝑏(0[,)𝑅)
212, 20nfima 5437 . . . . 5 𝑏(abs “ (0[,)𝑅))
221, 21nfcxfr 2765 . . . 4 𝑏𝐷
23 nfcv 2767 . . . 4 𝑦𝐷
24 nfcv 2767 . . . 4 𝑦((1 + 𝑏)↑𝑐-𝐶)
25 nfcv 2767 . . . 4 𝑏((1 + 𝑦)↑𝑐-𝐶)
26 oveq2 6613 . . . . 5 (𝑏 = 𝑦 → (1 + 𝑏) = (1 + 𝑦))
2726oveq1d 6620 . . . 4 (𝑏 = 𝑦 → ((1 + 𝑏)↑𝑐-𝐶) = ((1 + 𝑦)↑𝑐-𝐶))
2822, 23, 24, 25, 27cbvmptf 4713 . . 3 (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶)) = (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))
2928oveq2i 6616 . 2 (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶)))
30 cnelprrecn 9974 . . . . 5 ℂ ∈ {ℝ, ℂ}
3130a1i 11 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ℂ ∈ {ℝ, ℂ})
32 1cnd 10001 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 1 ∈ ℂ)
33 cnvimass 5448 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ dom abs
341, 33eqsstri 3619 . . . . . . . . 9 𝐷 ⊆ dom abs
35 absf 14006 . . . . . . . . . 10 abs:ℂ⟶ℝ
3635fdmi 6011 . . . . . . . . 9 dom abs = ℂ
3734, 36sseqtri 3621 . . . . . . . 8 𝐷 ⊆ ℂ
3837a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐷 ⊆ ℂ)
3938sselda 3588 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝑦 ∈ ℂ)
4032, 39addcld 10004 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (1 + 𝑦) ∈ ℂ)
41 simpr 477 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → (1 + 𝑦) ∈ ℝ)
42 1cnd 10001 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 1 ∈ ℂ)
4339adantr 481 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 𝑦 ∈ ℂ)
4442, 43pncan2d 10339 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → ((1 + 𝑦) − 1) = 𝑦)
45 1red 10000 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 1 ∈ ℝ)
4641, 45resubcld 10403 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → ((1 + 𝑦) − 1) ∈ ℝ)
4744, 46eqeltrrd 2705 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 𝑦 ∈ ℝ)
48 1pneg1e0 11074 . . . . . . . . 9 (1 + -1) = 0
49 1red 10000 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
5049renegcld 10402 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → -1 ∈ ℝ)
51 simpr 477 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
52 ffn 6004 . . . . . . . . . . . . . . . . . . . 20 (abs:ℂ⟶ℝ → abs Fn ℂ)
53 elpreima 6294 . . . . . . . . . . . . . . . . . . . 20 (abs Fn ℂ → (𝑦 ∈ (abs “ (0[,)𝑅)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)𝑅))))
5435, 52, 53mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (abs “ (0[,)𝑅)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)𝑅)))
5554simprbi 480 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (abs “ (0[,)𝑅)) → (abs‘𝑦) ∈ (0[,)𝑅))
5655, 1eleq2s 2722 . . . . . . . . . . . . . . . . 17 (𝑦𝐷 → (abs‘𝑦) ∈ (0[,)𝑅))
57 0re 9985 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
58 ssrab2 3671 . . . . . . . . . . . . . . . . . . . . 21 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ
59 ressxr 10028 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℝ*
6058, 59sstri 3597 . . . . . . . . . . . . . . . . . . . 20 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ*
61 supxrcl 12085 . . . . . . . . . . . . . . . . . . . 20 ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
6260, 61ax-mp 5 . . . . . . . . . . . . . . . . . . 19 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*
635, 62eqeltri 2700 . . . . . . . . . . . . . . . . . 18 𝑅 ∈ ℝ*
64 elico2 12176 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑦) ∈ (0[,)𝑅) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅)))
6557, 63, 64mp2an 707 . . . . . . . . . . . . . . . . 17 ((abs‘𝑦) ∈ (0[,)𝑅) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅))
6656, 65sylib 208 . . . . . . . . . . . . . . . 16 (𝑦𝐷 → ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < 𝑅))
6766simp3d 1073 . . . . . . . . . . . . . . 15 (𝑦𝐷 → (abs‘𝑦) < 𝑅)
6867adantl 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (abs‘𝑦) < 𝑅)
69 binomcxp.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
70 binomcxp.b . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
71 binomcxp.lt . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
72 binomcxp.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℂ)
73 binomcxplem.f . . . . . . . . . . . . . . . 16 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
7469, 70, 71, 72, 73, 7, 5binomcxplemradcnv 38019 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
7574adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝑅 = 1)
7668, 75breqtrd 4644 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (abs‘𝑦) < 1)
7776adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (abs‘𝑦) < 1)
7851, 49absltd 14097 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (-1 < 𝑦𝑦 < 1)))
7977, 78mpbid 222 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (-1 < 𝑦𝑦 < 1))
8079simpld 475 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → -1 < 𝑦)
8150, 51, 49, 80ltadd2dd 10141 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → (1 + -1) < (1 + 𝑦))
8248, 81syl5eqbrr 4654 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ 𝑦 ∈ ℝ) → 0 < (1 + 𝑦))
8347, 82syldan 487 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → 0 < (1 + 𝑦))
8441, 83elrpd 11813 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) ∧ (1 + 𝑦) ∈ ℝ) → (1 + 𝑦) ∈ ℝ+)
8584ex 450 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((1 + 𝑦) ∈ ℝ → (1 + 𝑦) ∈ ℝ+))
86 eqid 2626 . . . . . 6 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
8786ellogdm 24280 . . . . 5 ((1 + 𝑦) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((1 + 𝑦) ∈ ℂ ∧ ((1 + 𝑦) ∈ ℝ → (1 + 𝑦) ∈ ℝ+)))
8840, 85, 87sylanbrc 697 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (1 + 𝑦) ∈ (ℂ ∖ (-∞(,]0)))
89 eldifi 3715 . . . . . 6 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) → 𝑥 ∈ ℂ)
9089adantl 482 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → 𝑥 ∈ ℂ)
9172adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
9291negcld 10324 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → -𝐶 ∈ ℂ)
9392adantr 481 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → -𝐶 ∈ ℂ)
9490, 93cxpcld 24349 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → (𝑥𝑐-𝐶) ∈ ℂ)
95 ovex 6633 . . . . 5 (-𝐶 · (𝑥𝑐(-𝐶 − 1))) ∈ V
9695a1i 11 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ (ℂ ∖ (-∞(,]0))) → (-𝐶 · (𝑥𝑐(-𝐶 − 1))) ∈ V)
97 1cnd 10001 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
98 simpr 477 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
9997, 98addcld 10004 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) ∈ ℂ)
100 c0ex 9979 . . . . . . . . 9 0 ∈ V
101100a1i 11 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑥 ∈ ℂ) → 0 ∈ V)
102 1cnd 10001 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ∈ ℂ)
10331, 102dvmptc 23622 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
10431dvmptid 23621 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
10531, 97, 101, 103, 98, 97, 104dvmptadd 23624 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ (1 + 𝑥))) = (𝑥 ∈ ℂ ↦ (0 + 1)))
106 0p1e1 11077 . . . . . . . 8 (0 + 1) = 1
107106mpteq2i 4706 . . . . . . 7 (𝑥 ∈ ℂ ↦ (0 + 1)) = (𝑥 ∈ ℂ ↦ 1)
108105, 107syl6eq 2676 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ ℂ ↦ (1 + 𝑥))) = (𝑥 ∈ ℂ ↦ 1))
109 fvex 6160 . . . . . . . 8 (TopOpen‘ℂfld) ∈ V
110 cnfldtps 22486 . . . . . . . . . 10 fld ∈ TopSp
111 cnfldbas 19664 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
112 eqid 2626 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
113111, 112tpsuni 20648 . . . . . . . . . 10 (ℂfld ∈ TopSp → ℂ = (TopOpen‘ℂfld))
114110, 113ax-mp 5 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
115114restid 16010 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ V → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
116109, 115ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
117116eqcomi 2635 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
118112cnfldtop 22492 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
119 eqid 2626 . . . . . . . . . . . 12 (abs ∘ − ) = (abs ∘ − )
120119cnbl0 22482 . . . . . . . . . . 11 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘(abs ∘ − ))𝑅))
12163, 120ax-mp 5 . . . . . . . . . 10 (abs “ (0[,)𝑅)) = (0(ball‘(abs ∘ − ))𝑅)
1221, 121eqtri 2648 . . . . . . . . 9 𝐷 = (0(ball‘(abs ∘ − ))𝑅)
123 cnxmet 22481 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
124 0cn 9977 . . . . . . . . . 10 0 ∈ ℂ
125112cnfldtopn 22490 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
126125blopn 22210 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
127123, 124, 63, 126mp3an 1421 . . . . . . . . 9 (0(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld)
128122, 127eqeltri 2700 . . . . . . . 8 𝐷 ∈ (TopOpen‘ℂfld)
129 isopn3i 20791 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐷 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷)
130118, 128, 129mp2an 707 . . . . . . 7 ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷
131130a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ((int‘(TopOpen‘ℂfld))‘𝐷) = 𝐷)
13231, 99, 97, 108, 38, 117, 112, 131dvmptres2 23626 . . . . 5 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥𝐷 ↦ (1 + 𝑥))) = (𝑥𝐷 ↦ 1))
133 oveq2 6613 . . . . . . 7 (𝑥 = 𝑦 → (1 + 𝑥) = (1 + 𝑦))
134133cbvmptv 4715 . . . . . 6 (𝑥𝐷 ↦ (1 + 𝑥)) = (𝑦𝐷 ↦ (1 + 𝑦))
135134oveq2i 6616 . . . . 5 (ℂ D (𝑥𝐷 ↦ (1 + 𝑥))) = (ℂ D (𝑦𝐷 ↦ (1 + 𝑦)))
136 eqidd 2627 . . . . . 6 (𝑥 = 𝑦 → 1 = 1)
137136cbvmptv 4715 . . . . 5 (𝑥𝐷 ↦ 1) = (𝑦𝐷 ↦ 1)
138132, 135, 1373eqtr3g 2683 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ (1 + 𝑦))) = (𝑦𝐷 ↦ 1))
13986dvcncxp1 24379 . . . . 5 (-𝐶 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐-𝐶))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (-𝐶 · (𝑥𝑐(-𝐶 − 1)))))
14092, 139syl 17 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐-𝐶))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (-𝐶 · (𝑥𝑐(-𝐶 − 1)))))
141 oveq1 6612 . . . 4 (𝑥 = (1 + 𝑦) → (𝑥𝑐-𝐶) = ((1 + 𝑦)↑𝑐-𝐶))
142 oveq1 6612 . . . . 5 (𝑥 = (1 + 𝑦) → (𝑥𝑐(-𝐶 − 1)) = ((1 + 𝑦)↑𝑐(-𝐶 − 1)))
143142oveq2d 6621 . . . 4 (𝑥 = (1 + 𝑦) → (-𝐶 · (𝑥𝑐(-𝐶 − 1))) = (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))))
14431, 31, 88, 32, 94, 96, 138, 140, 141, 143dvmptco 23636 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))) = (𝑦𝐷 ↦ ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1)))
14591adantr 481 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → 𝐶 ∈ ℂ)
146145negcld 10324 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → -𝐶 ∈ ℂ)
147146, 32subcld 10337 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (-𝐶 − 1) ∈ ℂ)
14840, 147cxpcld 24349 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((1 + 𝑦)↑𝑐(-𝐶 − 1)) ∈ ℂ)
149146, 148mulcld 10005 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) ∈ ℂ)
150149mulid1d 10002 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑦𝐷) → ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1) = (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))))
151150mpteq2dva 4709 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑦𝐷 ↦ ((-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) · 1)) = (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))))
152 nfcv 2767 . . . . 5 𝑏(-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))
153 nfcv 2767 . . . . 5 𝑦(-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))
154 oveq2 6613 . . . . . . 7 (𝑦 = 𝑏 → (1 + 𝑦) = (1 + 𝑏))
155154oveq1d 6620 . . . . . 6 (𝑦 = 𝑏 → ((1 + 𝑦)↑𝑐(-𝐶 − 1)) = ((1 + 𝑏)↑𝑐(-𝐶 − 1)))
156155oveq2d 6621 . . . . 5 (𝑦 = 𝑏 → (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1))) = (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))
15723, 22, 152, 153, 156cbvmptf 4713 . . . 4 (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))
158157a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑦𝐷 ↦ (-𝐶 · ((1 + 𝑦)↑𝑐(-𝐶 − 1)))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
159144, 151, 1583eqtrd 2664 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑦𝐷 ↦ ((1 + 𝑦)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
16029, 159syl5eq 2672 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  {crab 2916  Vcvv 3191  cdif 3557  wss 3560  {cpr 4155   cuni 4407   class class class wbr 4618  cmpt 4678  ccnv 5078  dom cdm 5079  cima 5082  ccom 5083   Fn wfn 5845  wf 5846  cfv 5850  (class class class)co 6605  supcsup 8291  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  -∞cmnf 10017  *cxr 10018   < clt 10019  cle 10020  cmin 10211  -cneg 10212  cn 10965  0cn0 11237  +crp 11776  (,]cioc 12115  [,)cico 12116  seqcseq 12738  cexp 12797  abscabs 13903  cli 14144  t crest 15997  TopOpenctopn 15998  ∞Metcxmt 19645  ballcbl 19647  fldccnfld 19660  Topctop 20612  TopSpctps 20614  intcnt 20726   D cdv 23528  𝑐ccxp 24201  C𝑐cbcc 38003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12118  df-ioc 12119  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-fl 12530  df-mod 12606  df-seq 12739  df-exp 12798  df-fac 12998  df-bc 13027  df-hash 13055  df-shft 13736  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-limsup 14131  df-clim 14148  df-rlim 14149  df-sum 14346  df-prod 14556  df-fallfac 14658  df-ef 14718  df-sin 14720  df-cos 14721  df-tan 14722  df-pi 14723  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-fbas 19657  df-fg 19658  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cld 20728  df-ntr 20729  df-cls 20730  df-nei 20807  df-lp 20845  df-perf 20846  df-cn 20936  df-cnp 20937  df-haus 21024  df-cmp 21095  df-tx 21270  df-hmeo 21463  df-fil 21555  df-fm 21647  df-flim 21648  df-flf 21649  df-xms 22030  df-ms 22031  df-tms 22032  df-cncf 22584  df-limc 23531  df-dv 23532  df-log 24202  df-cxp 24203  df-bcc 38004
This theorem is referenced by:  binomcxplemnotnn0  38023
  Copyright terms: Public domain W3C validator