Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemdvsum Structured version   Visualization version   GIF version

Theorem binomcxplemdvsum 38057
Description: Lemma for binomcxp 38059. The derivative of the generalized sum in binomcxplemnn0 38051. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
binomcxplem.p 𝑃 = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘))
Assertion
Ref Expression
binomcxplemdvsum (𝜑 → (ℂ D 𝑃) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)))
Distinct variable groups:   𝑘,𝑏,𝐹   𝜑,𝑏,𝑘   𝑟,𝑏,𝑘,𝐹   𝑗,𝑘,𝜑   𝐶,𝑗
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑘,𝑟,𝑏)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑃(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑟,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗)

Proof of Theorem binomcxplemdvsum
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.s . . . 4 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 binomcxplem.p . . . . 5 𝑃 = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘))
3 binomcxplem.d . . . . . . 7 𝐷 = (abs “ (0[,)𝑅))
4 nfcv 2761 . . . . . . . 8 𝑏abs
5 nfcv 2761 . . . . . . . . 9 𝑏0
6 nfcv 2761 . . . . . . . . 9 𝑏[,)
7 binomcxplem.r . . . . . . . . . 10 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
8 nfcv 2761 . . . . . . . . . . . . . 14 𝑏 +
9 nfmpt1 4709 . . . . . . . . . . . . . . . 16 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
101, 9nfcxfr 2759 . . . . . . . . . . . . . . 15 𝑏𝑆
11 nfcv 2761 . . . . . . . . . . . . . . 15 𝑏𝑟
1210, 11nffv 6157 . . . . . . . . . . . . . 14 𝑏(𝑆𝑟)
135, 8, 12nfseq 12754 . . . . . . . . . . . . 13 𝑏seq0( + , (𝑆𝑟))
1413nfel1 2775 . . . . . . . . . . . 12 𝑏seq0( + , (𝑆𝑟)) ∈ dom ⇝
15 nfcv 2761 . . . . . . . . . . . 12 𝑏
1614, 15nfrab 3112 . . . . . . . . . . 11 𝑏{𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }
17 nfcv 2761 . . . . . . . . . . 11 𝑏*
18 nfcv 2761 . . . . . . . . . . 11 𝑏 <
1916, 17, 18nfsup 8304 . . . . . . . . . 10 𝑏sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
207, 19nfcxfr 2759 . . . . . . . . 9 𝑏𝑅
215, 6, 20nfov 6633 . . . . . . . 8 𝑏(0[,)𝑅)
224, 21nfima 5435 . . . . . . 7 𝑏(abs “ (0[,)𝑅))
233, 22nfcxfr 2759 . . . . . 6 𝑏𝐷
24 nfcv 2761 . . . . . 6 𝑦𝐷
25 nfcv 2761 . . . . . 6 𝑦Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘)
26 nfcv 2761 . . . . . . 7 𝑏0
27 nfcv 2761 . . . . . . . . 9 𝑏𝑦
2810, 27nffv 6157 . . . . . . . 8 𝑏(𝑆𝑦)
29 nfcv 2761 . . . . . . . 8 𝑏𝑚
3028, 29nffv 6157 . . . . . . 7 𝑏((𝑆𝑦)‘𝑚)
3126, 30nfsum 14358 . . . . . 6 𝑏Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚)
32 simpl 473 . . . . . . . . . 10 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → 𝑏 = 𝑦)
3332fveq2d 6154 . . . . . . . . 9 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → (𝑆𝑏) = (𝑆𝑦))
3433fveq1d 6152 . . . . . . . 8 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → ((𝑆𝑏)‘𝑘) = ((𝑆𝑦)‘𝑘))
3534sumeq2dv 14370 . . . . . . 7 (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘) = Σ𝑘 ∈ ℕ0 ((𝑆𝑦)‘𝑘))
36 nfcv 2761 . . . . . . . 8 𝑚((𝑆𝑦)‘𝑘)
37 nfcv 2761 . . . . . . . . . . . 12 𝑘
38 nfmpt1 4709 . . . . . . . . . . . 12 𝑘(𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘)))
3937, 38nfmpt 4708 . . . . . . . . . . 11 𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
401, 39nfcxfr 2759 . . . . . . . . . 10 𝑘𝑆
41 nfcv 2761 . . . . . . . . . 10 𝑘𝑦
4240, 41nffv 6157 . . . . . . . . 9 𝑘(𝑆𝑦)
43 nfcv 2761 . . . . . . . . 9 𝑘𝑚
4442, 43nffv 6157 . . . . . . . 8 𝑘((𝑆𝑦)‘𝑚)
45 fveq2 6150 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑆𝑦)‘𝑘) = ((𝑆𝑦)‘𝑚))
4636, 44, 45cbvsumi 14364 . . . . . . 7 Σ𝑘 ∈ ℕ0 ((𝑆𝑦)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚)
4735, 46syl6eq 2671 . . . . . 6 (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
4823, 24, 25, 31, 47cbvmptf 4710 . . . . 5 (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘)) = (𝑦𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
492, 48eqtri 2643 . . . 4 𝑃 = (𝑦𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
50 ovex 6635 . . . . . 6 (𝐶C𝑐𝑗) ∈ V
5150a1i 11 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ V)
52 binomcxplem.f . . . . . 6 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
5352a1i 11 . . . . 5 (𝜑𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
5452a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
55 simpr 477 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
5655oveq2d 6623 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
57 simpr 477 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
58 binomcxp.c . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
5958adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
6059, 57bcccl 38041 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
6154, 56, 57, 60fvmptd 6247 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
6261, 60eqeltrd 2698 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
6351, 53, 62fmpt2d 6351 . . . 4 (𝜑𝐹:ℕ0⟶ℂ)
64 nfcv 2761 . . . . . . 7 𝑟
65 nfcv 2761 . . . . . . 7 𝑧
66 nfv 1840 . . . . . . 7 𝑧seq0( + , (𝑆𝑟)) ∈ dom ⇝
67 nfcv 2761 . . . . . . . . 9 𝑟0
68 nfcv 2761 . . . . . . . . 9 𝑟 +
69 nfcv 2761 . . . . . . . . . . 11 𝑟(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
701, 69nfcxfr 2759 . . . . . . . . . 10 𝑟𝑆
71 nfcv 2761 . . . . . . . . . 10 𝑟𝑧
7270, 71nffv 6157 . . . . . . . . 9 𝑟(𝑆𝑧)
7367, 68, 72nfseq 12754 . . . . . . . 8 𝑟seq0( + , (𝑆𝑧))
7473nfel1 2775 . . . . . . 7 𝑟seq0( + , (𝑆𝑧)) ∈ dom ⇝
75 fveq2 6150 . . . . . . . . 9 (𝑟 = 𝑧 → (𝑆𝑟) = (𝑆𝑧))
7675seqeq3d 12752 . . . . . . . 8 (𝑟 = 𝑧 → seq0( + , (𝑆𝑟)) = seq0( + , (𝑆𝑧)))
7776eleq1d 2683 . . . . . . 7 (𝑟 = 𝑧 → (seq0( + , (𝑆𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝑆𝑧)) ∈ dom ⇝ ))
7864, 65, 66, 74, 77cbvrab 3184 . . . . . 6 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }
7978supeq1i 8300 . . . . 5 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < )
807, 79eqtri 2643 . . . 4 𝑅 = sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < )
811fveq1i 6151 . . . . . . . . . . . 12 (𝑆𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)
82 seqeq3 12749 . . . . . . . . . . . 12 ((𝑆𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧) → seq0( + , (𝑆𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)))
8381, 82ax-mp 5 . . . . . . . . . . 11 seq0( + , (𝑆𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧))
8483eleq1i 2689 . . . . . . . . . 10 (seq0( + , (𝑆𝑧)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ )
8584a1i 11 . . . . . . . . 9 (𝑧 ∈ ℝ → (seq0( + , (𝑆𝑧)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ ))
8685rabbiia 3173 . . . . . . . 8 {𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }
8786supeq1i 8300 . . . . . . 7 sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )
887, 79, 873eqtrri 2648 . . . . . 6 sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) = 𝑅
8988eleq1i 2689 . . . . 5 (sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ ↔ 𝑅 ∈ ℝ)
9088oveq2i 6618 . . . . . 6 ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) = ((abs‘𝑥) + 𝑅)
9190oveq1i 6617 . . . . 5 (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2) = (((abs‘𝑥) + 𝑅) / 2)
92 eqid 2621 . . . . 5 ((abs‘𝑥) + 1) = ((abs‘𝑥) + 1)
9389, 91, 92ifbieq12i 4086 . . . 4 if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)) = if(𝑅 ∈ ℝ, (((abs‘𝑥) + 𝑅) / 2), ((abs‘𝑥) + 1))
94 oveq1 6614 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑏 → (𝑤𝑘) = (𝑏𝑘))
9594oveq2d 6623 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑏 → ((𝐹𝑘) · (𝑤𝑘)) = ((𝐹𝑘) · (𝑏𝑘)))
9695mpteq2dv 4707 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
9796cbvmptv 4712 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘)))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
9897fveq1i 6151 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)
99 seqeq3 12749 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧) → seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)))
10098, 99ax-mp 5 . . . . . . . . . . . . 13 seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧))
101100eleq1i 2689 . . . . . . . . . . . 12 (seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ )
102101a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℝ → (seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ ))
103102rabbiia 3173 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }
104103supeq1i 8300 . . . . . . . . 9 sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )
105104eleq1i 2689 . . . . . . . 8 (sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ ↔ sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ)
106104oveq2i 6618 . . . . . . . . 9 ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) = ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ))
107106oveq1i 6617 . . . . . . . 8 (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2) = (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2)
108105, 107, 92ifbieq12i 4086 . . . . . . 7 if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)) = if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))
109108oveq2i 6618 . . . . . 6 ((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) = ((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)))
110109oveq1i 6617 . . . . 5 (((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2) = (((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2)
111110oveq2i 6618 . . . 4 (0(ball‘(abs ∘ − ))(((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2)) = (0(ball‘(abs ∘ − ))(((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2))
1121, 49, 63, 80, 3, 93, 111pserdv2 24095 . . 3 (𝜑 → (ℂ D 𝑃) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1)))))
113 cnvimass 5446 . . . . . . . 8 (abs “ (0[,)𝑅)) ⊆ dom abs
1143, 113eqsstri 3616 . . . . . . 7 𝐷 ⊆ dom abs
115 absf 14014 . . . . . . . 8 abs:ℂ⟶ℝ
116115fdmi 6011 . . . . . . 7 dom abs = ℂ
117114, 116sseqtri 3618 . . . . . 6 𝐷 ⊆ ℂ
118117sseli 3580 . . . . 5 (𝑦𝐷𝑦 ∈ ℂ)
119 binomcxplem.e . . . . . . . . . 10 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
120119a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))))
121 simplr 791 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝑦)
122121oveq1d 6622 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝑦↑(𝑘 − 1)))
123122oveq2d 6623 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1))))
124123mpteq2dva 4706 . . . . . . . . 9 (((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
125 simpr 477 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
126 nnex 10973 . . . . . . . . . . 11 ℕ ∈ V
127126mptex 6443 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V
128127a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V)
129120, 124, 125, 128fvmptd 6247 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (𝐸𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
130129adantr 481 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → (𝐸𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
131 simpr 477 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛)
132131fveq2d 6154 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) = (𝐹𝑛))
133131, 132oveq12d 6625 . . . . . . . 8 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 · (𝐹𝑘)) = (𝑛 · (𝐹𝑛)))
134131oveq1d 6622 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 − 1) = (𝑛 − 1))
135134oveq2d 6623 . . . . . . . 8 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑦↑(𝑘 − 1)) = (𝑦↑(𝑛 − 1)))
136133, 135oveq12d 6625 . . . . . . 7 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1))) = ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
137 simpr 477 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
138 ovex 6635 . . . . . . . 8 ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V
139138a1i 11 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V)
140130, 136, 137, 139fvmptd 6247 . . . . . 6 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝐸𝑦)‘𝑛) = ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
141140sumeq2dv 14370 . . . . 5 ((𝜑𝑦 ∈ ℂ) → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
142118, 141sylan2 491 . . . 4 ((𝜑𝑦𝐷) → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
143142mpteq2dva 4706 . . 3 (𝜑 → (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1)))))
144112, 143eqtr4d 2658 . 2 (𝜑 → (ℂ D 𝑃) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)))
145 nfcv 2761 . . . 4 𝑏
146 nfmpt1 4709 . . . . . . 7 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
147119, 146nfcxfr 2759 . . . . . 6 𝑏𝐸
148147, 27nffv 6157 . . . . 5 𝑏(𝐸𝑦)
149 nfcv 2761 . . . . 5 𝑏𝑛
150148, 149nffv 6157 . . . 4 𝑏((𝐸𝑦)‘𝑛)
151145, 150nfsum 14358 . . 3 𝑏Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)
152 nfcv 2761 . . 3 𝑦Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)
153 simpl 473 . . . . . . 7 ((𝑦 = 𝑏𝑛 ∈ ℕ) → 𝑦 = 𝑏)
154153fveq2d 6154 . . . . . 6 ((𝑦 = 𝑏𝑛 ∈ ℕ) → (𝐸𝑦) = (𝐸𝑏))
155154fveq1d 6152 . . . . 5 ((𝑦 = 𝑏𝑛 ∈ ℕ) → ((𝐸𝑦)‘𝑛) = ((𝐸𝑏)‘𝑛))
156155sumeq2dv 14370 . . . 4 (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝐸𝑏)‘𝑛))
157 nfmpt1 4709 . . . . . . . . 9 𝑘(𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))
15837, 157nfmpt 4708 . . . . . . . 8 𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
159119, 158nfcxfr 2759 . . . . . . 7 𝑘𝐸
160 nfcv 2761 . . . . . . 7 𝑘𝑏
161159, 160nffv 6157 . . . . . 6 𝑘(𝐸𝑏)
162 nfcv 2761 . . . . . 6 𝑘𝑛
163161, 162nffv 6157 . . . . 5 𝑘((𝐸𝑏)‘𝑛)
164 nfcv 2761 . . . . 5 𝑛((𝐸𝑏)‘𝑘)
165 fveq2 6150 . . . . 5 (𝑛 = 𝑘 → ((𝐸𝑏)‘𝑛) = ((𝐸𝑏)‘𝑘))
166163, 164, 165cbvsumi 14364 . . . 4 Σ𝑛 ∈ ℕ ((𝐸𝑏)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)
167156, 166syl6eq 2671 . . 3 (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘))
16824, 23, 151, 152, 167cbvmptf 4710 . 2 (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘))
169144, 168syl6eq 2671 1 (𝜑 → (ℂ D 𝑃) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  {crab 2911  Vcvv 3186  ifcif 4060   class class class wbr 4615  cmpt 4675  ccnv 5075  dom cdm 5076  cima 5079  ccom 5080  cfv 5849  (class class class)co 6607  supcsup 8293  cc 9881  cr 9882  0cc0 9883  1c1 9884   + caddc 9886   · cmul 9888  *cxr 10020   < clt 10021  cmin 10213   / cdiv 10631  cn 10967  2c2 11017  0cn0 11239  +crp 11779  [,)cico 12122  seqcseq 12744  cexp 12803  abscabs 13911  cli 14152  Σcsu 14353  ballcbl 19655   D cdv 23540  C𝑐cbcc 38038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-fi 8264  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ioo 12124  df-ico 12126  df-icc 12127  df-fz 12272  df-fzo 12410  df-fl 12536  df-seq 12745  df-exp 12804  df-fac 13004  df-hash 13061  df-shft 13744  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-limsup 14139  df-clim 14156  df-rlim 14157  df-sum 14354  df-prod 14564  df-fallfac 14666  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-hom 15890  df-cco 15891  df-rest 16007  df-topn 16008  df-0g 16026  df-gsum 16027  df-topgen 16028  df-pt 16029  df-prds 16032  df-xrs 16086  df-qtop 16091  df-imas 16092  df-xps 16094  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-mulg 17465  df-cntz 17674  df-cmn 18119  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-fbas 19665  df-fg 19666  df-cnfld 19669  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-cld 20736  df-ntr 20737  df-cls 20738  df-nei 20815  df-lp 20853  df-perf 20854  df-cn 20944  df-cnp 20945  df-haus 21032  df-cmp 21103  df-tx 21278  df-hmeo 21471  df-fil 21563  df-fm 21655  df-flim 21656  df-flf 21657  df-xms 22038  df-ms 22039  df-tms 22040  df-cncf 22594  df-limc 23543  df-dv 23544  df-ulm 24042  df-bcc 38039
This theorem is referenced by:  binomcxplemnotnn0  38058
  Copyright terms: Public domain W3C validator