Mathbox for Steve Rodriguez < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemnn0 Structured version   Visualization version   GIF version

Theorem binomcxplemnn0 39050
 Description: Lemma for binomcxp 39058. When 𝐶 is a nonnegative integer, the binomial's finite sum value by the standard binomial theorem binom 14761 equals this generalized infinite sum: the generalized binomial coefficient and exponentiation operators give exactly the same values in the standard index set (0...𝐶), and when the index set is widened beyond 𝐶 the additional values are just zeroes. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
binomcxplemnn0 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘

Proof of Theorem binomcxplemnn0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 binomcxp.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
21rpcnd 12067 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 binomcxp.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
43recnd 10260 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5 binom 14761 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
653expia 1115 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0 → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))))
72, 4, 6syl2anc 696 . . . . . 6 (𝜑 → (𝐶 ∈ ℕ0 → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))))
87imp 444 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
92adantr 472 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 𝐴 ∈ ℂ)
104adantr 472 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 𝐵 ∈ ℂ)
119, 10addcld 10251 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℂ)
12 simpr 479 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
13 cxpexp 24613 . . . . . 6 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶))
1411, 12, 13syl2anc 696 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶))
15 elfznn0 12626 . . . . . . . 8 (𝑘 ∈ (0...𝐶) → 𝑘 ∈ ℕ0)
16 simplr 809 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℕ0)
17 simpr 479 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
1816, 17bccbc 39046 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) = (𝐶C𝑘))
1915, 18sylan2 492 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶C𝑐𝑘) = (𝐶C𝑘))
202ad2antrr 764 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝐴 ∈ ℂ)
21 elfzle2 12538 . . . . . . . . . . 11 (𝑘 ∈ (0...𝐶) → 𝑘𝐶)
2221adantl 473 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝑘𝐶)
23 nn0sub 11535 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2423ancoms 468 . . . . . . . . . . . 12 ((𝐶 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2524adantll 752 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2615, 25sylan2 492 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2722, 26mpbid 222 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶𝑘) ∈ ℕ0)
28 cxpexp 24613 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝐶𝑘) ∈ ℕ0) → (𝐴𝑐(𝐶𝑘)) = (𝐴↑(𝐶𝑘)))
2920, 27, 28syl2anc 696 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐴𝑐(𝐶𝑘)) = (𝐴↑(𝐶𝑘)))
3029oveq1d 6828 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))
3119, 30oveq12d 6831 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = ((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
3231sumeq2dv 14632 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
338, 14, 323eqtr4d 2804 . . . 4 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
34 binomcxp.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
3534adantr 472 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
3611, 35cxpcld 24653 . . . 4 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℂ)
3733, 36eqeltrrd 2840 . . 3 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) ∈ ℂ)
3837addid1d 10428 . 2 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
39 nn0uz 11915 . . . 4 0 = (ℤ‘0)
40 eqid 2760 . . . 4 (ℤ‘(𝐶 + 1)) = (ℤ‘(𝐶 + 1))
41 1nn0 11500 . . . . . 6 1 ∈ ℕ0
4241a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → 1 ∈ ℕ0)
4312, 42nn0addcld 11547 . . . 4 ((𝜑𝐶 ∈ ℕ0) → (𝐶 + 1) ∈ ℕ0)
44 eqidd 2761 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)))) = (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)))))
45 simpr 479 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
4645oveq2d 6829 . . . . . 6 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
4745oveq2d 6829 . . . . . . . 8 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶𝑗) = (𝐶𝑘))
4847oveq2d 6829 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐴𝑐(𝐶𝑗)) = (𝐴𝑐(𝐶𝑘)))
4945oveq2d 6829 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐵𝑗) = (𝐵𝑘))
5048, 49oveq12d 6831 . . . . . 6 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)) = ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))
5146, 50oveq12d 6831 . . . . 5 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
5234ad2antrr 764 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
5352, 17bcccl 39040 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
542ad2antrr 764 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
5517nn0cnd 11545 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
5652, 55subcld 10584 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
5754, 56cxpcld 24653 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑐(𝐶𝑘)) ∈ ℂ)
584ad2antrr 764 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
5958, 17expcld 13202 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
6057, 59mulcld 10252 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) ∈ ℂ)
6153, 60mulcld 10252 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) ∈ ℂ)
6244, 51, 17, 61fvmptd 6450 . . . 4 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
63 peano2nn0 11525 . . . . . 6 (𝐶 ∈ ℕ0 → (𝐶 + 1) ∈ ℕ0)
6463adantl 473 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → (𝐶 + 1) ∈ ℕ0)
65 c0ex 10226 . . . . . . . . 9 0 ∈ V
6665fconst 6252 . . . . . . . 8 (ℕ0 × {0}):ℕ0⟶{0}
6766a1i 11 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → (ℕ0 × {0}):ℕ0⟶{0})
68 0red 10233 . . . . . . . 8 ((𝜑𝐶 ∈ ℕ0) → 0 ∈ ℝ)
6968snssd 4485 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → {0} ⊆ ℝ)
7067, 69fssd 6218 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → (ℕ0 × {0}):ℕ0⟶ℝ)
7170ffvelrnda 6522 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {0})‘𝑘) ∈ ℝ)
7262, 61eqeltrd 2839 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) ∈ ℂ)
73 climrel 14422 . . . . . . 7 Rel ⇝
7439xpeq1i 5292 . . . . . . . . 9 (ℕ0 × {0}) = ((ℤ‘0) × {0})
75 seqeq3 13000 . . . . . . . . 9 ((ℕ0 × {0}) = ((ℤ‘0) × {0}) → seq0( + , (ℕ0 × {0})) = seq0( + , ((ℤ‘0) × {0})))
7674, 75ax-mp 5 . . . . . . . 8 seq0( + , (ℕ0 × {0})) = seq0( + , ((ℤ‘0) × {0}))
77 0z 11580 . . . . . . . . 9 0 ∈ ℤ
78 serclim0 14507 . . . . . . . . 9 (0 ∈ ℤ → seq0( + , ((ℤ‘0) × {0})) ⇝ 0)
7977, 78ax-mp 5 . . . . . . . 8 seq0( + , ((ℤ‘0) × {0})) ⇝ 0
8076, 79eqbrtri 4825 . . . . . . 7 seq0( + , (ℕ0 × {0})) ⇝ 0
81 releldm 5513 . . . . . . 7 ((Rel ⇝ ∧ seq0( + , (ℕ0 × {0})) ⇝ 0) → seq0( + , (ℕ0 × {0})) ∈ dom ⇝ )
8273, 80, 81mp2an 710 . . . . . 6 seq0( + , (ℕ0 × {0})) ∈ dom ⇝
8382a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → seq0( + , (ℕ0 × {0})) ∈ dom ⇝ )
84 eluznn0 11950 . . . . . . . . . . . 12 (((𝐶 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℕ0)
8564, 84sylan 489 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℕ0)
8685, 62syldan 488 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
87 0zd 11581 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 0 ∈ ℤ)
8885nn0zd 11672 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℤ)
89 1zzd 11600 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 1 ∈ ℤ)
9088, 89zsubcld 11679 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝑘 − 1) ∈ ℤ)
9112nn0zd 11672 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℤ)
9291adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℤ)
9312nn0ge0d 11546 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ ℕ0) → 0 ≤ 𝐶)
9493adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 0 ≤ 𝐶)
95 eluzle 11892 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘(𝐶 + 1)) → (𝐶 + 1) ≤ 𝑘)
9695adantl 473 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶 + 1) ≤ 𝑘)
9792zred 11674 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℝ)
98 1red 10247 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 1 ∈ ℝ)
9985nn0red 11544 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℝ)
100 leaddsub 10696 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐶 + 1) ≤ 𝑘𝐶 ≤ (𝑘 − 1)))
10197, 98, 99, 100syl3anc 1477 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶 + 1) ≤ 𝑘𝐶 ≤ (𝑘 − 1)))
10296, 101mpbid 222 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ≤ (𝑘 − 1))
103 elfz4 12528 . . . . . . . . . . . . . 14 (((0 ∈ ℤ ∧ (𝑘 − 1) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (0 ≤ 𝐶𝐶 ≤ (𝑘 − 1))) → 𝐶 ∈ (0...(𝑘 − 1)))
10487, 90, 92, 94, 102, 103syl32anc 1485 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ (0...(𝑘 − 1)))
10534ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℂ)
106105, 85bcc0 39041 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1))))
107104, 106mpbird 247 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶C𝑐𝑘) = 0)
108107oveq1d 6828 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (0 · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
1092ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐴 ∈ ℂ)
110 eluzelcn 11891 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘(𝐶 + 1)) → 𝑘 ∈ ℂ)
111110adantl 473 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℂ)
112105, 111subcld 10584 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶𝑘) ∈ ℂ)
113109, 112cxpcld 24653 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐴𝑐(𝐶𝑘)) ∈ ℂ)
1144ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐵 ∈ ℂ)
115114, 85expcld 13202 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐵𝑘) ∈ ℂ)
116113, 115mulcld 10252 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) ∈ ℂ)
117116mul02d 10426 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (0 · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
118108, 117eqtrd 2794 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
11986, 118eqtrd 2794 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = 0)
120119abs00bd 14230 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) = 0)
121 0re 10232 . . . . . . . 8 0 ∈ ℝ
122120, 121syl6eqel 2847 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ∈ ℝ)
123 eqle 10331 . . . . . . 7 (((abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ∈ ℝ ∧ (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) = 0) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ 0)
124122, 120, 123syl2anc 696 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ 0)
12571recnd 10260 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {0})‘𝑘) ∈ ℂ)
12685, 125syldan 488 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((ℕ0 × {0})‘𝑘) ∈ ℂ)
127126mul02d 10426 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (0 · ((ℕ0 × {0})‘𝑘)) = 0)
128124, 127breqtrrd 4832 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ (0 · ((ℕ0 × {0})‘𝑘)))
12939, 64, 71, 72, 83, 68, 128cvgcmpce 14749 . . . 4 ((𝜑𝐶 ∈ ℕ0) → seq0( + , (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))) ∈ dom ⇝ )
13039, 40, 43, 62, 61, 129isumsplit 14771 . . 3 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))))
131 1cnd 10248 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 1 ∈ ℂ)
13235, 131pncand 10585 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → ((𝐶 + 1) − 1) = 𝐶)
133132oveq2d 6829 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → (0...((𝐶 + 1) − 1)) = (0...𝐶))
134133sumeq1d 14630 . . . 4 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
135134oveq1d 6828 . . 3 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))))
136118sumeq2dv 14632 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0)
137 ssid 3765 . . . . . . 7 (ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1))
138137orci 404 . . . . . 6 ((ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1)) ∨ (ℤ‘(𝐶 + 1)) ∈ Fin)
139 sumz 14652 . . . . . 6 (((ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1)) ∨ (ℤ‘(𝐶 + 1)) ∈ Fin) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0 = 0)
140138, 139ax-mp 5 . . . . 5 Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0 = 0
141136, 140syl6eq 2810 . . . 4 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
142141oveq2d 6829 . . 3 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0))
143130, 135, 1423eqtrd 2798 . 2 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0))
14438, 143, 333eqtr4rd 2805 1 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ⊆ wss 3715  {csn 4321   class class class wbr 4804   ↦ cmpt 4881   × cxp 5264  dom cdm 5266  Rel wrel 5271  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  Fincfn 8121  ℂcc 10126  ℝcr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266   ≤ cle 10267   − cmin 10458  ℕ0cn0 11484  ℤcz 11569  ℤ≥cuz 11879  ℝ+crp 12025  ...cfz 12519  seqcseq 12995  ↑cexp 13054  Ccbc 13283  abscabs 14173   ⇝ cli 14414  Σcsu 14615  ↑𝑐ccxp 24501  C𝑐cbcc 39037 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-prod 14835  df-fallfac 14937  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-cxp 24503  df-bcc 39038 This theorem is referenced by:  binomcxp  39058
 Copyright terms: Public domain W3C validator