MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomlem Structured version   Visualization version   GIF version

Theorem binomlem 14267
Description: Lemma for binom 14268 (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
binomlem.1 (𝜑𝐴 ∈ ℂ)
binomlem.2 (𝜑𝐵 ∈ ℂ)
binomlem.3 (𝜑𝑁 ∈ ℕ0)
binomlem.4 (𝜓 → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
Assertion
Ref Expression
binomlem ((𝜑𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝜓(𝑘)

Proof of Theorem binomlem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 binomlem.4 . . . . . 6 (𝜓 → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
21adantl 480 . . . . 5 ((𝜑𝜓) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
32oveq1d 6440 . . . 4 ((𝜑𝜓) → (((𝐴 + 𝐵)↑𝑁) · 𝐴) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴))
4 fzfid 12501 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
5 binomlem.1 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
6 fzelp1 12130 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ (0...(𝑁 + 1)))
7 binomlem.3 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
8 elfzelz 12080 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
9 bccl 12838 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
107, 8, 9syl2an 492 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
1110nn0cnd 11107 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℂ)
126, 11sylan2 489 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
13 fznn0sub 12111 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
14 expcl 12607 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (𝐴↑(𝑁𝑘)) ∈ ℂ)
155, 13, 14syl2an 492 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴↑(𝑁𝑘)) ∈ ℂ)
16 binomlem.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
17 elfznn0 12169 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
18 expcl 12607 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
1916, 17, 18syl2an 492 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝐵𝑘) ∈ ℂ)
206, 19sylan2 489 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐵𝑘) ∈ ℂ)
2115, 20mulcld 9814 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)) ∈ ℂ)
2212, 21mulcld 9814 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) ∈ ℂ)
234, 5, 22fsummulc1 14226 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴) = Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴))
245adantr 479 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
2512, 21, 24mulassd 9817 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴) = ((𝑁C𝑘) · (((𝐴↑(𝑁𝑘)) · (𝐵𝑘)) · 𝐴)))
267nn0cnd 11107 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℂ)
2726adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℂ)
28 1cnd 9810 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ)
29 elfzelz 12080 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
3029adantl 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ)
3130zcnd 11222 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ)
3227, 28, 31addsubd 10163 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) = ((𝑁𝑘) + 1))
3332oveq2d 6441 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴↑((𝑁 + 1) − 𝑘)) = (𝐴↑((𝑁𝑘) + 1)))
34 expp1 12596 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (𝐴↑((𝑁𝑘) + 1)) = ((𝐴↑(𝑁𝑘)) · 𝐴))
355, 13, 34syl2an 492 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴↑((𝑁𝑘) + 1)) = ((𝐴↑(𝑁𝑘)) · 𝐴))
3633, 35eqtrd 2548 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴↑((𝑁 + 1) − 𝑘)) = ((𝐴↑(𝑁𝑘)) · 𝐴))
3736oveq1d 6440 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)) = (((𝐴↑(𝑁𝑘)) · 𝐴) · (𝐵𝑘)))
3815, 24, 20mul32d 9996 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝐴↑(𝑁𝑘)) · 𝐴) · (𝐵𝑘)) = (((𝐴↑(𝑁𝑘)) · (𝐵𝑘)) · 𝐴))
3937, 38eqtrd 2548 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)) = (((𝐴↑(𝑁𝑘)) · (𝐵𝑘)) · 𝐴))
4039oveq2d 6441 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = ((𝑁C𝑘) · (((𝐴↑(𝑁𝑘)) · (𝐵𝑘)) · 𝐴)))
4125, 40eqtr4d 2551 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴) = ((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
4241sumeq2dv 14148 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
43 fzssp1 12122 . . . . . . . 8 (0...𝑁) ⊆ (0...(𝑁 + 1))
4443a1i 11 . . . . . . 7 (𝜑 → (0...𝑁) ⊆ (0...(𝑁 + 1)))
45 fznn0sub 12111 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
46 expcl 12607 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0) → (𝐴↑((𝑁 + 1) − 𝑘)) ∈ ℂ)
475, 45, 46syl2an 492 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝐴↑((𝑁 + 1) − 𝑘)) ∈ ℂ)
4847, 19mulcld 9814 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)) ∈ ℂ)
4911, 48mulcld 9814 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) ∈ ℂ)
506, 49sylan2 489 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) ∈ ℂ)
517adantr 479 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → 𝑁 ∈ ℕ0)
52 eldifi 3598 . . . . . . . . . . . 12 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁)) → 𝑘 ∈ (0...(𝑁 + 1)))
5352, 8syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁)) → 𝑘 ∈ ℤ)
5453adantl 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → 𝑘 ∈ ℤ)
55 eldifn 3599 . . . . . . . . . . 11 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
5655adantl 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
57 bcval3 12822 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) = 0)
5851, 54, 56, 57syl3anc 1317 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → (𝑁C𝑘) = 0)
5958oveq1d 6440 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → ((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (0 · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
6048mul02d 9984 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (0 · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = 0)
6152, 60sylan2 489 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → (0 · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = 0)
6259, 61eqtrd 2548 . . . . . . 7 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → ((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = 0)
63 fzssuz 12120 . . . . . . . 8 (0...(𝑁 + 1)) ⊆ (ℤ‘0)
6463a1i 11 . . . . . . 7 (𝜑 → (0...(𝑁 + 1)) ⊆ (ℤ‘0))
6544, 50, 62, 64sumss 14169 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
6623, 42, 653eqtrd 2552 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
6766adantr 479 . . . 4 ((𝜑𝜓) → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
683, 67eqtrd 2548 . . 3 ((𝜑𝜓) → (((𝐴 + 𝐵)↑𝑁) · 𝐴) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
691oveq1d 6440 . . . 4 (𝜓 → (((𝐴 + 𝐵)↑𝑁) · 𝐵) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵))
704, 16, 22fsummulc1 14226 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) = Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵))
71 1zzd 11148 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
72 0z 11128 . . . . . . . . 9 0 ∈ ℤ
7372a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
747nn0zd 11219 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
7516adantr 479 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ ℂ)
7622, 75mulcld 9814 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) ∈ ℂ)
77 oveq2 6433 . . . . . . . . . 10 (𝑘 = (𝑗 − 1) → (𝑁C𝑘) = (𝑁C(𝑗 − 1)))
78 oveq2 6433 . . . . . . . . . . . 12 (𝑘 = (𝑗 − 1) → (𝑁𝑘) = (𝑁 − (𝑗 − 1)))
7978oveq2d 6441 . . . . . . . . . . 11 (𝑘 = (𝑗 − 1) → (𝐴↑(𝑁𝑘)) = (𝐴↑(𝑁 − (𝑗 − 1))))
80 oveq2 6433 . . . . . . . . . . 11 (𝑘 = (𝑗 − 1) → (𝐵𝑘) = (𝐵↑(𝑗 − 1)))
8179, 80oveq12d 6443 . . . . . . . . . 10 (𝑘 = (𝑗 − 1) → ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1))))
8277, 81oveq12d 6443 . . . . . . . . 9 (𝑘 = (𝑗 − 1) → ((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) = ((𝑁C(𝑗 − 1)) · ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1)))))
8382oveq1d 6440 . . . . . . . 8 (𝑘 = (𝑗 − 1) → (((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) = (((𝑁C(𝑗 − 1)) · ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1)))) · 𝐵))
8471, 73, 74, 76, 83fsumshft 14221 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) = Σ𝑗 ∈ ((0 + 1)...(𝑁 + 1))(((𝑁C(𝑗 − 1)) · ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1)))) · 𝐵))
85 oveq1 6432 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑗 − 1) = (𝑘 − 1))
8685oveq2d 6441 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑁C(𝑗 − 1)) = (𝑁C(𝑘 − 1)))
8785oveq2d 6441 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑁 − (𝑗 − 1)) = (𝑁 − (𝑘 − 1)))
8887oveq2d 6441 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝐴↑(𝑁 − (𝑗 − 1))) = (𝐴↑(𝑁 − (𝑘 − 1))))
8985oveq2d 6441 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝐵↑(𝑗 − 1)) = (𝐵↑(𝑘 − 1)))
9088, 89oveq12d 6443 . . . . . . . . . 10 (𝑗 = 𝑘 → ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1))) = ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1))))
9186, 90oveq12d 6443 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑁C(𝑗 − 1)) · ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1)))) = ((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))))
9291oveq1d 6440 . . . . . . . 8 (𝑗 = 𝑘 → (((𝑁C(𝑗 − 1)) · ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1)))) · 𝐵) = (((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) · 𝐵))
9392cbvsumv 14141 . . . . . . 7 Σ𝑗 ∈ ((0 + 1)...(𝑁 + 1))(((𝑁C(𝑗 − 1)) · ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1)))) · 𝐵) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) · 𝐵)
9484, 93syl6eq 2564 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) · 𝐵))
9526adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑁 ∈ ℂ)
96 elfzelz 12080 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑘 ∈ ℤ)
9796adantl 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ ℤ)
9897zcnd 11222 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ ℂ)
99 1cnd 9810 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 1 ∈ ℂ)
10095, 98, 99subsub3d 10172 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁 − (𝑘 − 1)) = ((𝑁 + 1) − 𝑘))
101100oveq2d 6441 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝐴↑(𝑁 − (𝑘 − 1))) = (𝐴↑((𝑁 + 1) − 𝑘)))
102101oveq1d 6440 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1))) = ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1))))
103102oveq2d 6441 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) = ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1)))))
104103oveq1d 6440 . . . . . . . 8 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) · 𝐵) = (((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1)))) · 𝐵))
105 fzp1ss 12129 . . . . . . . . . . . 12 (0 ∈ ℤ → ((0 + 1)...(𝑁 + 1)) ⊆ (0...(𝑁 + 1)))
10672, 105ax-mp 5 . . . . . . . . . . 11 ((0 + 1)...(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
107106sseli 3468 . . . . . . . . . 10 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑘 ∈ (0...(𝑁 + 1)))
1087adantr 479 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑁 ∈ ℕ0)
1098adantl 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℤ)
110 peano2zm 11160 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
111109, 110syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 − 1) ∈ ℤ)
112 bccl 12838 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
113108, 111, 112syl2anc 690 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
114113nn0cnd 11107 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℂ)
115107, 114sylan2 489 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℂ)
116107, 47sylan2 489 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝐴↑((𝑁 + 1) − 𝑘)) ∈ ℂ)
11716adantr 479 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐵 ∈ ℂ)
118 elfznn 12108 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ)
119 0p1e1 10886 . . . . . . . . . . . . . . 15 (0 + 1) = 1
120119oveq1i 6435 . . . . . . . . . . . . . 14 ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1))
121118, 120eleq2s 2610 . . . . . . . . . . . . 13 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑘 ∈ ℕ)
122121adantl 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ ℕ)
123 nnm1nn0 11088 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
124122, 123syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑘 − 1) ∈ ℕ0)
125117, 124expcld 12737 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝐵↑(𝑘 − 1)) ∈ ℂ)
126116, 125mulcld 9814 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1))) ∈ ℂ)
127115, 126, 117mulassd 9817 . . . . . . . 8 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1)))) · 𝐵) = ((𝑁C(𝑘 − 1)) · (((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1))) · 𝐵)))
128116, 125, 117mulassd 9817 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1))) · 𝐵) = ((𝐴↑((𝑁 + 1) − 𝑘)) · ((𝐵↑(𝑘 − 1)) · 𝐵)))
129 expm1t 12617 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) = ((𝐵↑(𝑘 − 1)) · 𝐵))
13016, 121, 129syl2an 492 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝐵𝑘) = ((𝐵↑(𝑘 − 1)) · 𝐵))
131130oveq2d 6441 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)) = ((𝐴↑((𝑁 + 1) − 𝑘)) · ((𝐵↑(𝑘 − 1)) · 𝐵)))
132128, 131eqtr4d 2551 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1))) · 𝐵) = ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))
133132oveq2d 6441 . . . . . . . 8 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · (((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1))) · 𝐵)) = ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
134104, 127, 1333eqtrd 2552 . . . . . . 7 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) · 𝐵) = ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
135134sumeq2dv 14148 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) · 𝐵) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
136106a1i 11 . . . . . . 7 (𝜑 → ((0 + 1)...(𝑁 + 1)) ⊆ (0...(𝑁 + 1)))
137114, 48mulcld 9814 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) ∈ ℂ)
138107, 137sylan2 489 . . . . . . 7 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) ∈ ℂ)
1397adantr 479 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 𝑁 ∈ ℕ0)
140 eldifi 3598 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ (0...(𝑁 + 1)))
141140adantl 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 𝑘 ∈ (0...(𝑁 + 1)))
142141, 8syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 𝑘 ∈ ℤ)
143142, 110syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → (𝑘 − 1) ∈ ℤ)
144 eldifn 3599 . . . . . . . . . . . 12 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1))) → ¬ 𝑘 ∈ ((0 + 1)...(𝑁 + 1)))
145144adantl 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ¬ 𝑘 ∈ ((0 + 1)...(𝑁 + 1)))
14672a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 0 ∈ ℤ)
147139nn0zd 11219 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 𝑁 ∈ ℤ)
148 1zzd 11148 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 1 ∈ ℤ)
149 fzaddel 12113 . . . . . . . . . . . . 13 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑘 − 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑘 − 1) ∈ (0...𝑁) ↔ ((𝑘 − 1) + 1) ∈ ((0 + 1)...(𝑁 + 1))))
150146, 147, 143, 148, 149syl22anc 1318 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ((𝑘 − 1) ∈ (0...𝑁) ↔ ((𝑘 − 1) + 1) ∈ ((0 + 1)...(𝑁 + 1))))
151142zcnd 11222 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 𝑘 ∈ ℂ)
152 ax-1cn 9748 . . . . . . . . . . . . . 14 1 ∈ ℂ
153 npcan 10040 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
154151, 152, 153sylancl 692 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ((𝑘 − 1) + 1) = 𝑘)
155154eleq1d 2576 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → (((𝑘 − 1) + 1) ∈ ((0 + 1)...(𝑁 + 1)) ↔ 𝑘 ∈ ((0 + 1)...(𝑁 + 1))))
156150, 155bitrd 266 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ((𝑘 − 1) ∈ (0...𝑁) ↔ 𝑘 ∈ ((0 + 1)...(𝑁 + 1))))
157145, 156mtbird 313 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ¬ (𝑘 − 1) ∈ (0...𝑁))
158 bcval3 12822 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ ∧ ¬ (𝑘 − 1) ∈ (0...𝑁)) → (𝑁C(𝑘 − 1)) = 0)
159139, 143, 157, 158syl3anc 1317 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → (𝑁C(𝑘 − 1)) = 0)
160159oveq1d 6440 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (0 · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
161140, 60sylan2 489 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → (0 · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = 0)
162160, 161eqtrd 2548 . . . . . . 7 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = 0)
163136, 138, 162, 64sumss 14169 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
16494, 135, 1633eqtrd 2552 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
16570, 164eqtrd 2548 . . . 4 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
16669, 165sylan9eqr 2570 . . 3 ((𝜑𝜓) → (((𝐴 + 𝐵)↑𝑁) · 𝐵) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
16768, 166oveq12d 6443 . 2 ((𝜑𝜓) → ((((𝐴 + 𝐵)↑𝑁) · 𝐴) + (((𝐴 + 𝐵)↑𝑁) · 𝐵)) = (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
1685, 16addcld 9813 . . . . 5 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
169168, 7expp1d 12738 . . . 4 (𝜑 → ((𝐴 + 𝐵)↑(𝑁 + 1)) = (((𝐴 + 𝐵)↑𝑁) · (𝐴 + 𝐵)))
170168, 7expcld 12737 . . . . 5 (𝜑 → ((𝐴 + 𝐵)↑𝑁) ∈ ℂ)
171170, 5, 16adddid 9818 . . . 4 (𝜑 → (((𝐴 + 𝐵)↑𝑁) · (𝐴 + 𝐵)) = ((((𝐴 + 𝐵)↑𝑁) · 𝐴) + (((𝐴 + 𝐵)↑𝑁) · 𝐵)))
172169, 171eqtrd 2548 . . 3 (𝜑 → ((𝐴 + 𝐵)↑(𝑁 + 1)) = ((((𝐴 + 𝐵)↑𝑁) · 𝐴) + (((𝐴 + 𝐵)↑𝑁) · 𝐵)))
173172adantr 479 . 2 ((𝜑𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = ((((𝐴 + 𝐵)↑𝑁) · 𝐴) + (((𝐴 + 𝐵)↑𝑁) · 𝐵)))
174 bcpasc 12837 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
1757, 8, 174syl2an 492 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
176175oveq1d 6440 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
17711, 114, 48adddird 9819 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
178176, 177eqtr3d 2550 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
179178sumeq2dv 14148 . . . 4 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
180 fzfid 12501 . . . . 5 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
181180, 49, 137fsumadd 14184 . . . 4 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))) = (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
182179, 181eqtrd 2548 . . 3 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
183182adantr 479 . 2 ((𝜑𝜓) → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
184167, 173, 1833eqtr4d 2558 1 ((𝜑𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1938  cdif 3441  wss 3444  cfv 5689  (class class class)co 6425  cc 9688  0cc0 9690  1c1 9691   + caddc 9693   · cmul 9695  cmin 10016  cn 10774  0cn0 11046  cz 11117  cuz 11426  ...cfz 12064  cexp 12589  Ccbc 12818  Σcsu 14131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722  ax-inf2 8296  ax-cnex 9746  ax-resscn 9747  ax-1cn 9748  ax-icn 9749  ax-addcl 9750  ax-addrcl 9751  ax-mulcl 9752  ax-mulrcl 9753  ax-mulcom 9754  ax-addass 9755  ax-mulass 9756  ax-distr 9757  ax-i2m1 9758  ax-1ne0 9759  ax-1rid 9760  ax-rnegex 9761  ax-rrecex 9762  ax-cnre 9763  ax-pre-lttri 9764  ax-pre-lttrn 9765  ax-pre-ltadd 9766  ax-pre-mulgt0 9767  ax-pre-sup 9768
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6833  df-1st 6933  df-2nd 6934  df-wrecs 7168  df-recs 7230  df-rdg 7268  df-1o 7322  df-oadd 7326  df-er 7504  df-en 7717  df-dom 7718  df-sdom 7719  df-fin 7720  df-sup 8106  df-oi 8173  df-card 8523  df-pnf 9830  df-mnf 9831  df-xr 9832  df-ltxr 9833  df-le 9834  df-sub 10018  df-neg 10019  df-div 10433  df-nn 10775  df-2 10833  df-3 10834  df-n0 11047  df-z 11118  df-uz 11427  df-rp 11574  df-fz 12065  df-fzo 12202  df-seq 12531  df-exp 12590  df-fac 12790  df-bc 12819  df-hash 12847  df-cj 13544  df-re 13545  df-im 13546  df-sqrt 13680  df-abs 13681  df-clim 13931  df-sum 14132
This theorem is referenced by:  binom  14268
  Copyright terms: Public domain W3C validator