MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biort Structured version   Visualization version   GIF version

Theorem biort 937
Description: A wff disjoined with truth is true. (Contributed by NM, 23-May-1999.)
Assertion
Ref Expression
biort (𝜑 → (𝜑 ↔ (𝜑𝜓)))

Proof of Theorem biort
StepHypRef Expression
1 orc 400 . 2 (𝜑 → (𝜑𝜓))
2 ax-1 6 . 2 (𝜑 → ((𝜑𝜓) → 𝜑))
31, 2impbid2 216 1 (𝜑 → (𝜑 ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by:  pm5.55  938
  Copyright terms: Public domain W3C validator