MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem2 Structured version   Visualization version   GIF version

Theorem birthdaylem2 25457
Description: For general 𝑁 and 𝐾, count the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
Assertion
Ref Expression
birthdaylem2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
Distinct variable groups:   𝑓,𝑘,𝐾   𝑓,𝑁,𝑘
Allowed substitution hints:   𝑆(𝑓,𝑘)   𝑇(𝑓,𝑘)

Proof of Theorem birthdaylem2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 birthday.t . . . . . . 7 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
21fveq2i 6666 . . . . . 6 (♯‘𝑇) = (♯‘{𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)})
3 fzfi 13328 . . . . . . 7 (1...𝐾) ∈ Fin
4 fzfi 13328 . . . . . . 7 (1...𝑁) ∈ Fin
5 hashf1 13803 . . . . . . 7 (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → (♯‘{𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}) = ((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾)))))
63, 4, 5mp2an 688 . . . . . 6 (♯‘{𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}) = ((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾))))
72, 6eqtri 2841 . . . . 5 (♯‘𝑇) = ((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾))))
8 elfznn0 12988 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
98adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
10 hashfz1 13694 . . . . . . . 8 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
119, 10syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝐾)) = 𝐾)
1211fveq2d 6667 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(♯‘(1...𝐾))) = (!‘𝐾))
13 nnnn0 11892 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
14 hashfz1 13694 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
1513, 14syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (♯‘(1...𝑁)) = 𝑁)
1615adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝑁)) = 𝑁)
1716, 11oveq12d 7163 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(1...𝑁))C(♯‘(1...𝐾))) = (𝑁C𝐾))
1812, 17oveq12d 7163 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾)))) = ((!‘𝐾) · (𝑁C𝐾)))
197, 18syl5eq 2865 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑇) = ((!‘𝐾) · (𝑁C𝐾)))
2013adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
2120faccld 13632 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℕ)
2221nncnd 11642 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℂ)
23 fznn0sub 12927 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
2423adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℕ0)
2524faccld 13632 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℕ)
2625nncnd 11642 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℂ)
2725nnne0d 11675 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ≠ 0)
2822, 26, 27divcld 11404 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / (!‘(𝑁𝐾))) ∈ ℂ)
299faccld 13632 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ)
3029nncnd 11642 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℂ)
3129nnne0d 11675 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ≠ 0)
3228, 30, 31divcan2d 11406 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (((!‘𝑁) / (!‘(𝑁𝐾))) / (!‘𝐾))) = ((!‘𝑁) / (!‘(𝑁𝐾))))
33 bcval2 13653 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3433adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3522, 26, 30, 27, 31divdiv1d 11435 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (((!‘𝑁) / (!‘(𝑁𝐾))) / (!‘𝐾)) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3634, 35eqtr4d 2856 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (((!‘𝑁) / (!‘(𝑁𝐾))) / (!‘𝐾)))
3736oveq2d 7161 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (𝑁C𝐾)) = ((!‘𝐾) · (((!‘𝑁) / (!‘(𝑁𝐾))) / (!‘𝐾))))
38 fzfid 13329 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝑁) ∈ Fin)
39 elfznn 12924 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
4039adantl 482 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ)
41 nnrp 12388 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
4241relogcld 25133 . . . . . . . . . 10 (𝑛 ∈ ℕ → (log‘𝑛) ∈ ℝ)
4342recnd 10657 . . . . . . . . 9 (𝑛 ∈ ℕ → (log‘𝑛) ∈ ℂ)
4440, 43syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (log‘𝑛) ∈ ℂ)
4538, 44fsumcl 15078 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(log‘𝑛) ∈ ℂ)
46 fzfid 13329 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...(𝑁𝐾)) ∈ Fin)
47 elfznn 12924 . . . . . . . . . 10 (𝑛 ∈ (1...(𝑁𝐾)) → 𝑛 ∈ ℕ)
4847adantl 482 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...(𝑁𝐾))) → 𝑛 ∈ ℕ)
4948, 43syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...(𝑁𝐾))) → (log‘𝑛) ∈ ℂ)
5046, 49fsumcl 15078 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) ∈ ℂ)
51 efsub 15441 . . . . . . 7 ((Σ𝑛 ∈ (1...𝑁)(log‘𝑛) ∈ ℂ ∧ Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) ∈ ℂ) → (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))))
5245, 50, 51syl2anc 584 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))))
5324nn0red 11944 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℝ)
5453ltp1d 11558 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) < ((𝑁𝐾) + 1))
55 fzdisj 12922 . . . . . . . . . . 11 ((𝑁𝐾) < ((𝑁𝐾) + 1) → ((1...(𝑁𝐾)) ∩ (((𝑁𝐾) + 1)...𝑁)) = ∅)
5654, 55syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((1...(𝑁𝐾)) ∩ (((𝑁𝐾) + 1)...𝑁)) = ∅)
57 fznn0sub2 13002 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))
5857adantl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ (0...𝑁))
59 elfzle2 12899 . . . . . . . . . . . . . . 15 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁𝐾) ≤ 𝑁)
6058, 59syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ≤ 𝑁)
6160adantr 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (𝑁𝐾) ≤ 𝑁)
62 simpr 485 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (𝑁𝐾) ∈ ℕ)
63 nnuz 12269 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
6462, 63eleqtrdi 2920 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (𝑁𝐾) ∈ (ℤ‘1))
65 nnz 11992 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6665ad2antrr 722 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → 𝑁 ∈ ℤ)
67 elfz5 12888 . . . . . . . . . . . . . 14 (((𝑁𝐾) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → ((𝑁𝐾) ∈ (1...𝑁) ↔ (𝑁𝐾) ≤ 𝑁))
6864, 66, 67syl2anc 584 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → ((𝑁𝐾) ∈ (1...𝑁) ↔ (𝑁𝐾) ≤ 𝑁))
6961, 68mpbird 258 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (𝑁𝐾) ∈ (1...𝑁))
70 fzsplit 12921 . . . . . . . . . . . 12 ((𝑁𝐾) ∈ (1...𝑁) → (1...𝑁) = ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)))
7169, 70syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (1...𝑁) = ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)))
72 simpr 485 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (𝑁𝐾) = 0)
7372oveq2d 7161 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (1...(𝑁𝐾)) = (1...0))
74 fz10 12916 . . . . . . . . . . . . . 14 (1...0) = ∅
7573, 74syl6eq 2869 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (1...(𝑁𝐾)) = ∅)
7675uneq1d 4135 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)) = (∅ ∪ (((𝑁𝐾) + 1)...𝑁)))
77 uncom 4126 . . . . . . . . . . . . . 14 (∅ ∪ (((𝑁𝐾) + 1)...𝑁)) = ((((𝑁𝐾) + 1)...𝑁) ∪ ∅)
78 un0 4341 . . . . . . . . . . . . . 14 ((((𝑁𝐾) + 1)...𝑁) ∪ ∅) = (((𝑁𝐾) + 1)...𝑁)
7977, 78eqtri 2841 . . . . . . . . . . . . 13 (∅ ∪ (((𝑁𝐾) + 1)...𝑁)) = (((𝑁𝐾) + 1)...𝑁)
8072oveq1d 7160 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → ((𝑁𝐾) + 1) = (0 + 1))
81 1e0p1 12128 . . . . . . . . . . . . . . 15 1 = (0 + 1)
8280, 81syl6eqr 2871 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → ((𝑁𝐾) + 1) = 1)
8382oveq1d 7160 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (((𝑁𝐾) + 1)...𝑁) = (1...𝑁))
8479, 83syl5eq 2865 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (∅ ∪ (((𝑁𝐾) + 1)...𝑁)) = (1...𝑁))
8576, 84eqtr2d 2854 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (1...𝑁) = ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)))
86 elnn0 11887 . . . . . . . . . . . 12 ((𝑁𝐾) ∈ ℕ0 ↔ ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
8724, 86sylib 219 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
8871, 85, 87mpjaodan 952 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝑁) = ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)))
8956, 88, 38, 44fsumsplit 15085 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(log‘𝑛) = (Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)))
9089oveq1d 7160 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)) = ((Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)))
91 fzfid 13329 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (((𝑁𝐾) + 1)...𝑁) ∈ Fin)
92 nn0p1nn 11924 . . . . . . . . . . . . 13 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
9324, 92syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℕ)
94 elfzuz 12892 . . . . . . . . . . . 12 (𝑛 ∈ (((𝑁𝐾) + 1)...𝑁) → 𝑛 ∈ (ℤ‘((𝑁𝐾) + 1)))
95 eluznn 12306 . . . . . . . . . . . 12 ((((𝑁𝐾) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((𝑁𝐾) + 1))) → 𝑛 ∈ ℕ)
9693, 94, 95syl2an 595 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → 𝑛 ∈ ℕ)
9796, 43syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘𝑛) ∈ ℂ)
9891, 97fsumcl 15078 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) ∈ ℂ)
9950, 98pncan2d 10987 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)) = Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛))
10090, 99eqtr2d 2854 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) = (Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)))
101100fveq2d 6667 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) = (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))))
10221nnne0d 11675 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ≠ 0)
103 eflog 25087 . . . . . . . . 9 (((!‘𝑁) ∈ ℂ ∧ (!‘𝑁) ≠ 0) → (exp‘(log‘(!‘𝑁))) = (!‘𝑁))
10422, 102, 103syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(log‘(!‘𝑁))) = (!‘𝑁))
105 logfac 25111 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (log‘(!‘𝑁)) = Σ𝑛 ∈ (1...𝑁)(log‘𝑛))
10620, 105syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘(!‘𝑁)) = Σ𝑛 ∈ (1...𝑁)(log‘𝑛))
107106fveq2d 6667 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(log‘(!‘𝑁))) = (exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)))
108104, 107eqtr3d 2855 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)))
109 eflog 25087 . . . . . . . . 9 (((!‘(𝑁𝐾)) ∈ ℂ ∧ (!‘(𝑁𝐾)) ≠ 0) → (exp‘(log‘(!‘(𝑁𝐾)))) = (!‘(𝑁𝐾)))
11026, 27, 109syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(log‘(!‘(𝑁𝐾)))) = (!‘(𝑁𝐾)))
111 logfac 25111 . . . . . . . . . 10 ((𝑁𝐾) ∈ ℕ0 → (log‘(!‘(𝑁𝐾))) = Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))
11224, 111syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘(!‘(𝑁𝐾))) = Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))
113112fveq2d 6667 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(log‘(!‘(𝑁𝐾)))) = (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)))
114110, 113eqtr3d 2855 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) = (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)))
115108, 114oveq12d 7163 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / (!‘(𝑁𝐾))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))))
11652, 101, 1153eqtr4d 2863 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) = ((!‘𝑁) / (!‘(𝑁𝐾))))
11732, 37, 1163eqtr4d 2863 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (𝑁C𝐾)) = (exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)))
11819, 117eqtrd 2853 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑇) = (exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)))
119 birthday.s . . . . . . . 8 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
120 mapvalg 8405 . . . . . . . . 9 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)})
1214, 3, 120mp2an 688 . . . . . . . 8 ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
122119, 121eqtr4i 2844 . . . . . . 7 𝑆 = ((1...𝑁) ↑m (1...𝐾))
123122fveq2i 6666 . . . . . 6 (♯‘𝑆) = (♯‘((1...𝑁) ↑m (1...𝐾)))
124 hashmap 13784 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → (♯‘((1...𝑁) ↑m (1...𝐾))) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾))))
1254, 3, 124mp2an 688 . . . . . 6 (♯‘((1...𝑁) ↑m (1...𝐾))) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾)))
126123, 125eqtri 2841 . . . . 5 (♯‘𝑆) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾)))
12716, 11oveq12d 7163 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(1...𝑁))↑(♯‘(1...𝐾))) = (𝑁𝐾))
128126, 127syl5eq 2865 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑆) = (𝑁𝐾))
129 nncn 11634 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
130129adantr 481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℂ)
131 nnne0 11659 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
132131adantr 481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ≠ 0)
133 elfzelz 12896 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
134133adantl 482 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℤ)
135 explog 25104 . . . . 5 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) = (exp‘(𝐾 · (log‘𝑁))))
136130, 132, 134, 135syl3anc 1363 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) = (exp‘(𝐾 · (log‘𝑁))))
137128, 136eqtrd 2853 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑆) = (exp‘(𝐾 · (log‘𝑁))))
138118, 137oveq12d 7163 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = ((exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁)))))
1399nn0cnd 11945 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℂ)
140 nnrp 12388 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
141140adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℝ+)
142141relogcld 25133 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘𝑁) ∈ ℝ)
143142recnd 10657 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘𝑁) ∈ ℂ)
144139, 143mulcld 10649 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 · (log‘𝑁)) ∈ ℂ)
145 efsub 15441 . . 3 ((Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) ∈ ℂ ∧ (𝐾 · (log‘𝑁)) ∈ ℂ) → (exp‘(Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = ((exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁)))))
14698, 144, 145syl2anc 584 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = ((exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁)))))
147 relogdiv 25103 . . . . . . 7 ((𝑛 ∈ ℝ+𝑁 ∈ ℝ+) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁)))
14841, 141, 147syl2anr 596 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ ℕ) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁)))
14996, 148syldan 591 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁)))
150149sumeq2dv 15048 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)))
15165adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
15224nn0zd 12073 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
153152peano2zd 12078 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
15496nnrpd 12417 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → 𝑛 ∈ ℝ+)
155141adantr 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → 𝑁 ∈ ℝ+)
156154, 155rpdivcld 12436 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (𝑛 / 𝑁) ∈ ℝ+)
157156relogcld 25133 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) ∈ ℝ)
158157recnd 10657 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) ∈ ℂ)
159 fvoveq1 7168 . . . . . 6 (𝑛 = (𝑁𝑘) → (log‘(𝑛 / 𝑁)) = (log‘((𝑁𝑘) / 𝑁)))
160151, 153, 151, 158, 159fsumrev 15122 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑘 ∈ ((𝑁𝑁)...(𝑁 − ((𝑁𝐾) + 1)))(log‘((𝑁𝑘) / 𝑁)))
161130subidd 10973 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝑁) = 0)
162 1cnd 10624 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 1 ∈ ℂ)
163130, 139, 162subsubd 11013 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝐾 − 1)) = ((𝑁𝐾) + 1))
164163oveq2d 7161 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝑁 − (𝐾 − 1))) = (𝑁 − ((𝑁𝐾) + 1)))
165 ax-1cn 10583 . . . . . . . . . 10 1 ∈ ℂ
166 subcl 10873 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐾 − 1) ∈ ℂ)
167139, 165, 166sylancl 586 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 − 1) ∈ ℂ)
168130, 167nncand 10990 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝑁 − (𝐾 − 1))) = (𝐾 − 1))
169164, 168eqtr3d 2855 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − ((𝑁𝐾) + 1)) = (𝐾 − 1))
170161, 169oveq12d 7163 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝑁)...(𝑁 − ((𝑁𝐾) + 1))) = (0...(𝐾 − 1)))
171130adantr 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ)
172 elfznn0 12988 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
173172adantl 482 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℕ0)
174173nn0cnd 11945 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
175132adantr 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ≠ 0)
176171, 174, 171, 175divsubdird 11443 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁𝑘) / 𝑁) = ((𝑁 / 𝑁) − (𝑘 / 𝑁)))
177171, 175dividd 11402 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑁 / 𝑁) = 1)
178177oveq1d 7160 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁 / 𝑁) − (𝑘 / 𝑁)) = (1 − (𝑘 / 𝑁)))
179176, 178eqtrd 2853 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁𝑘) / 𝑁) = (1 − (𝑘 / 𝑁)))
180179fveq2d 6667 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘((𝑁𝑘) / 𝑁)) = (log‘(1 − (𝑘 / 𝑁))))
181170, 180sumeq12rdv 15052 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑘 ∈ ((𝑁𝑁)...(𝑁 − ((𝑁𝐾) + 1)))(log‘((𝑁𝑘) / 𝑁)) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))
182160, 181eqtrd 2853 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))
183143adantr 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘𝑁) ∈ ℂ)
18491, 97, 183fsumsub 15131 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)) = (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁)))
185 fsumconst 15133 . . . . . . . 8 (((((𝑁𝐾) + 1)...𝑁) ∈ Fin ∧ (log‘𝑁) ∈ ℂ) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁) = ((♯‘(((𝑁𝐾) + 1)...𝑁)) · (log‘𝑁)))
18691, 143, 185syl2anc 584 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁) = ((♯‘(((𝑁𝐾) + 1)...𝑁)) · (log‘𝑁)))
187 1zzd 12001 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 1 ∈ ℤ)
188 fzen 12912 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑁𝐾) ∈ ℤ) → (1...𝐾) ≈ ((1 + (𝑁𝐾))...(𝐾 + (𝑁𝐾))))
189187, 134, 152, 188syl3anc 1363 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝐾) ≈ ((1 + (𝑁𝐾))...(𝐾 + (𝑁𝐾))))
19024nn0cnd 11945 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℂ)
191 addcom 10814 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑁𝐾) ∈ ℂ) → (1 + (𝑁𝐾)) = ((𝑁𝐾) + 1))
192165, 190, 191sylancr 587 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1 + (𝑁𝐾)) = ((𝑁𝐾) + 1))
193139, 130pncan3d 10988 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 + (𝑁𝐾)) = 𝑁)
194192, 193oveq12d 7163 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((1 + (𝑁𝐾))...(𝐾 + (𝑁𝐾))) = (((𝑁𝐾) + 1)...𝑁))
195189, 194breqtrd 5083 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝐾) ≈ (((𝑁𝐾) + 1)...𝑁))
196 hasheni 13696 . . . . . . . . . 10 ((1...𝐾) ≈ (((𝑁𝐾) + 1)...𝑁) → (♯‘(1...𝐾)) = (♯‘(((𝑁𝐾) + 1)...𝑁)))
197195, 196syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝐾)) = (♯‘(((𝑁𝐾) + 1)...𝑁)))
198197, 11eqtr3d 2855 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(((𝑁𝐾) + 1)...𝑁)) = 𝐾)
199198oveq1d 7160 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(((𝑁𝐾) + 1)...𝑁)) · (log‘𝑁)) = (𝐾 · (log‘𝑁)))
200186, 199eqtrd 2853 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁) = (𝐾 · (log‘𝑁)))
201200oveq2d 7161 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁)) = (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁))))
202184, 201eqtrd 2853 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)) = (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁))))
203150, 182, 2023eqtr3rd 2862 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁))) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))
204203fveq2d 6667 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
205138, 146, 2043eqtr2d 2859 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105  {cab 2796  wne 3013  cun 3931  cin 3932  c0 4288   class class class wbr 5057  wf 6344  1-1wf1 6345  cfv 6348  (class class class)co 7145  m cmap 8395  cen 8494  Fincfn 8497  cc 10523  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ...cfz 12880  cexp 13417  !cfa 13621  Ccbc 13650  chash 13678  Σcsu 15030  expce 15403  logclog 25065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-log 25067
This theorem is referenced by:  birthdaylem3  25458
  Copyright terms: Public domain W3C validator