MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bits0o Structured version   Visualization version   GIF version

Theorem bits0o 15071
Description: The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bits0o (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1)))

Proof of Theorem bits0o
StepHypRef Expression
1 2z 11354 . . . 4 2 ∈ ℤ
2 dvdsmul1 14922 . . . 4 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 2 ∥ (2 · 𝑁))
31, 2mpan 705 . . 3 (𝑁 ∈ ℤ → 2 ∥ (2 · 𝑁))
41a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℤ)
5 id 22 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
64, 5zmulcld 11432 . . . 4 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
7 2nn 11130 . . . . 5 2 ∈ ℕ
87a1i 11 . . . 4 (𝑁 ∈ ℤ → 2 ∈ ℕ)
9 1lt2 11139 . . . . 5 1 < 2
109a1i 11 . . . 4 (𝑁 ∈ ℤ → 1 < 2)
11 ndvdsp1 15054 . . . 4 (((2 · 𝑁) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ (2 · 𝑁) → ¬ 2 ∥ ((2 · 𝑁) + 1)))
126, 8, 10, 11syl3anc 1323 . . 3 (𝑁 ∈ ℤ → (2 ∥ (2 · 𝑁) → ¬ 2 ∥ ((2 · 𝑁) + 1)))
133, 12mpd 15 . 2 (𝑁 ∈ ℤ → ¬ 2 ∥ ((2 · 𝑁) + 1))
146peano2zd 11429 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
15 bits0 15069 . . 3 (((2 · 𝑁) + 1) ∈ ℤ → (0 ∈ (bits‘((2 · 𝑁) + 1)) ↔ ¬ 2 ∥ ((2 · 𝑁) + 1)))
1614, 15syl 17 . 2 (𝑁 ∈ ℤ → (0 ∈ (bits‘((2 · 𝑁) + 1)) ↔ ¬ 2 ∥ ((2 · 𝑁) + 1)))
1713, 16mpbird 247 1 (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wcel 1992   class class class wbr 4618  cfv 5850  (class class class)co 6605  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886   < clt 10019  cn 10965  2c2 11015  cz 11322  cdvds 14902  bitscbits 15060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fl 12530  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-dvds 14903  df-bits 15063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator