MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsf Structured version   Visualization version   GIF version

Theorem bitsf 15778
Description: The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsf bits:ℤ⟶𝒫 ℕ0

Proof of Theorem bitsf
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bits 15773 . 2 bits = (𝑛 ∈ ℤ ↦ {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))})
2 nn0ex 11906 . . . 4 0 ∈ V
3 ssrab2 4058 . . . 4 {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))} ⊆ ℕ0
42, 3elpwi2 5251 . . 3 {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))} ∈ 𝒫 ℕ0
54a1i 11 . 2 (𝑛 ∈ ℤ → {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))} ∈ 𝒫 ℕ0)
61, 5fmpti 6878 1 bits:ℤ⟶𝒫 ℕ0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2114  {crab 3144  Vcvv 3496  𝒫 cpw 4541   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158   / cdiv 11299  2c2 11695  0cn0 11900  cz 11984  cfl 13163  cexp 13432  cdvds 15609  bitscbits 15770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-1cn 10597  ax-addcl 10599
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-nn 11641  df-n0 11901  df-bits 15773
This theorem is referenced by:  bitsf1ocnv  15795  bitsf1  15797  eulerpartgbij  31632  eulerpartlemmf  31635
  Copyright terms: Public domain W3C validator