MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfzolem Structured version   Visualization version   GIF version

Theorem bitsfzolem 15356
Description: Lemma for bitsfzo 15357. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.)
Hypotheses
Ref Expression
bitsfzo.1 (𝜑𝑁 ∈ ℕ0)
bitsfzo.2 (𝜑𝑀 ∈ ℕ0)
bitsfzo.3 (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀))
bitsfzo.4 𝑆 = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
Assertion
Ref Expression
bitsfzolem (𝜑𝑁 ∈ (0..^(2↑𝑀)))
Distinct variable group:   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑛)   𝑀(𝑛)

Proof of Theorem bitsfzolem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 bitsfzo.1 . . 3 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 11913 . . 3 0 = (ℤ‘0)
31, 2syl6eleq 2847 . 2 (𝜑𝑁 ∈ (ℤ‘0))
4 2nn 11375 . . . . 5 2 ∈ ℕ
54a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ)
6 bitsfzo.2 . . . 4 (𝜑𝑀 ∈ ℕ0)
75, 6nnexpcld 13222 . . 3 (𝜑 → (2↑𝑀) ∈ ℕ)
87nnzd 11671 . 2 (𝜑 → (2↑𝑀) ∈ ℤ)
9 bitsfzo.3 . . . . . . . 8 (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀))
109adantr 472 . . . . . . 7 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (bits‘𝑁) ⊆ (0..^𝑀))
11 n2dvds1 15304 . . . . . . . . 9 ¬ 2 ∥ 1
124a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℕ)
13 ssrab2 3826 . . . . . . . . . . . . . . . . . . . . 21 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ ℕ0
14 bitsfzo.4 . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
1513, 2sseqtri 3776 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0)
16 nnssnn0 11485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℕ ⊆ ℕ0
171nn0red 11542 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑁 ∈ ℝ)
18 2re 11280 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 2 ∈ ℝ)
20 1lt2 11384 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 < 2
2120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 1 < 2)
22 expnbnd 13185 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛))
2317, 19, 21, 22syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛))
24 ssrexv 3806 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℕ ⊆ ℕ0 → (∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛) → ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛)))
2516, 23, 24mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛))
26 rabn0 4099 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛))
2725, 26sylibr 224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅)
28 infssuzcl 11963 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0) ∧ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅) → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
2915, 27, 28sylancr 698 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
3014, 29syl5eqel 2841 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
3113, 30sseldi 3740 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℕ0)
3231nn0zd 11670 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 ∈ ℤ)
3332adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℤ)
34 0red 10231 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 ∈ ℝ)
356nn0zd 11670 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ ℤ)
3635adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℤ)
3736zred 11672 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℝ)
3833zred 11672 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℝ)
396adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℕ0)
4039nn0ge0d 11544 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 ≤ 𝑀)
4118a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℝ)
4241, 39reexpcld 13217 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) ∈ ℝ)
4317adantr 472 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 ∈ ℝ)
445, 31nnexpcld 13222 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (2↑𝑆) ∈ ℕ)
4544adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) ∈ ℕ)
4645nnred 11225 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) ∈ ℝ)
47 simpr 479 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) ≤ 𝑁)
4830adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
49 oveq2 6819 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑆 → (2↑𝑚) = (2↑𝑆))
5049breq2d 4814 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑆 → (𝑁 < (2↑𝑚) ↔ 𝑁 < (2↑𝑆)))
51 oveq2 6819 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
5251breq2d 4814 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (𝑁 < (2↑𝑛) ↔ 𝑁 < (2↑𝑚)))
5352cbvrabv 3337 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} = {𝑚 ∈ ℕ0𝑁 < (2↑𝑚)}
5450, 53elrab2 3505 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ↔ (𝑆 ∈ ℕ0𝑁 < (2↑𝑆)))
5554simprbi 483 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑁 < (2↑𝑆))
5648, 55syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 < (2↑𝑆))
5742, 43, 46, 47, 56lelttrd 10385 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) < (2↑𝑆))
5820a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 < 2)
5941, 36, 33, 58ltexp2d 13230 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑀 < 𝑆 ↔ (2↑𝑀) < (2↑𝑆)))
6057, 59mpbird 247 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 < 𝑆)
6134, 37, 38, 40, 60lelttrd 10385 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 < 𝑆)
62 elnnz 11577 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ ℕ ↔ (𝑆 ∈ ℤ ∧ 0 < 𝑆))
6333, 61, 62sylanbrc 701 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℕ)
64 nnm1nn0 11524 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
6563, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℕ0)
6612, 65nnexpcld 13222 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℕ)
6766nncnd 11226 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℂ)
6867mulid2d 10248 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (1 · (2↑(𝑆 − 1))) = (2↑(𝑆 − 1)))
6938ltm1d 11146 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) < 𝑆)
7065nn0red 11542 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℝ)
7170, 38ltnled 10374 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑆 − 1)))
7269, 71mpbid 222 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑆 ≤ (𝑆 − 1))
73 oveq2 6819 . . . . . . . . . . . . . . . . . . 19 (𝑚 = (𝑆 − 1) → (2↑𝑚) = (2↑(𝑆 − 1)))
7473breq2d 4814 . . . . . . . . . . . . . . . . . 18 (𝑚 = (𝑆 − 1) → (𝑁 < (2↑𝑚) ↔ 𝑁 < (2↑(𝑆 − 1))))
7574, 53elrab2 3505 . . . . . . . . . . . . . . . . 17 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ↔ ((𝑆 − 1) ∈ ℕ0𝑁 < (2↑(𝑆 − 1))))
76 infssuzle 11962 . . . . . . . . . . . . . . . . . . . 20 (({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0) ∧ (𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}) → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ≤ (𝑆 − 1))
7715, 76mpan 708 . . . . . . . . . . . . . . . . . . 19 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ≤ (𝑆 − 1))
7814, 77syl5eqbr 4837 . . . . . . . . . . . . . . . . . 18 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑆 ≤ (𝑆 − 1))
7978a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑆 ≤ (𝑆 − 1)))
8075, 79syl5bir 233 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (((𝑆 − 1) ∈ ℕ0𝑁 < (2↑(𝑆 − 1))) → 𝑆 ≤ (𝑆 − 1)))
8165, 80mpand 713 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 < (2↑(𝑆 − 1)) → 𝑆 ≤ (𝑆 − 1)))
8272, 81mtod 189 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑁 < (2↑(𝑆 − 1)))
8366nnred 11225 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℝ)
8483, 43lenltd 10373 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((2↑(𝑆 − 1)) ≤ 𝑁 ↔ ¬ 𝑁 < (2↑(𝑆 − 1))))
8582, 84mpbird 247 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ≤ 𝑁)
8668, 85eqbrtrd 4824 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (1 · (2↑(𝑆 − 1))) ≤ 𝑁)
87 1red 10245 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ∈ ℝ)
88 2rp 12028 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
8988a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℝ+)
90 1z 11597 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
9190a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ∈ ℤ)
9233, 91zsubcld 11677 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℤ)
9389, 92rpexpcld 13224 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℝ+)
9487, 43, 93lemuldivd 12112 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((1 · (2↑(𝑆 − 1))) ≤ 𝑁 ↔ 1 ≤ (𝑁 / (2↑(𝑆 − 1)))))
9586, 94mpbid 222 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ≤ (𝑁 / (2↑(𝑆 − 1))))
96 2cn 11281 . . . . . . . . . . . . . . 15 2 ∈ ℂ
97 expm1t 13080 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑆 ∈ ℕ) → (2↑𝑆) = ((2↑(𝑆 − 1)) · 2))
9896, 63, 97sylancr 698 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) = ((2↑(𝑆 − 1)) · 2))
9956, 98breqtrd 4828 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 < ((2↑(𝑆 − 1)) · 2))
10043, 41, 93ltdivmuld 12114 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑁 / (2↑(𝑆 − 1))) < 2 ↔ 𝑁 < ((2↑(𝑆 − 1)) · 2)))
10199, 100mpbird 247 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) < 2)
102 df-2 11269 . . . . . . . . . . . 12 2 = (1 + 1)
103101, 102syl6breq 4843 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))
10443, 93rerpdivcld 12094 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) ∈ ℝ)
105 flbi 12809 . . . . . . . . . . . 12 (((𝑁 / (2↑(𝑆 − 1))) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1 ↔ (1 ≤ (𝑁 / (2↑(𝑆 − 1))) ∧ (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))))
106104, 90, 105sylancl 697 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1 ↔ (1 ≤ (𝑁 / (2↑(𝑆 − 1))) ∧ (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))))
10795, 103, 106mpbir2and 995 . . . . . . . . . 10 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1)
108107breq2d 4814 . . . . . . . . 9 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1)))) ↔ 2 ∥ 1))
10911, 108mtbiri 316 . . . . . . . 8 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1)))))
1101nn0zd 11670 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
111110adantr 472 . . . . . . . . 9 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 ∈ ℤ)
112 bitsval2 15347 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑆 − 1) ∈ ℕ0) → ((𝑆 − 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1))))))
113111, 65, 112syl2anc 696 . . . . . . . 8 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1))))))
114109, 113mpbird 247 . . . . . . 7 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ (bits‘𝑁))
11510, 114sseldd 3743 . . . . . 6 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ (0..^𝑀))
116 elfzolt2 12671 . . . . . 6 ((𝑆 − 1) ∈ (0..^𝑀) → (𝑆 − 1) < 𝑀)
117115, 116syl 17 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) < 𝑀)
118 zlem1lt 11619 . . . . . 6 ((𝑆 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑆𝑀 ↔ (𝑆 − 1) < 𝑀))
11933, 36, 118syl2anc 696 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆𝑀 ↔ (𝑆 − 1) < 𝑀))
120117, 119mpbird 247 . . . 4 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆𝑀)
12137, 38ltnled 10374 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑀 < 𝑆 ↔ ¬ 𝑆𝑀))
12260, 121mpbid 222 . . . 4 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑆𝑀)
123120, 122pm2.65da 601 . . 3 (𝜑 → ¬ (2↑𝑀) ≤ 𝑁)
1247nnred 11225 . . . 4 (𝜑 → (2↑𝑀) ∈ ℝ)
12517, 124ltnled 10374 . . 3 (𝜑 → (𝑁 < (2↑𝑀) ↔ ¬ (2↑𝑀) ≤ 𝑁))
126123, 125mpbird 247 . 2 (𝜑𝑁 < (2↑𝑀))
127 elfzo2 12665 . 2 (𝑁 ∈ (0..^(2↑𝑀)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (2↑𝑀) ∈ ℤ ∧ 𝑁 < (2↑𝑀)))
1283, 8, 126, 127syl3anbrc 1429 1 (𝜑𝑁 ∈ (0..^(2↑𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1630  wcel 2137  wne 2930  wrex 3049  {crab 3052  wss 3713  c0 4056   class class class wbr 4802  cfv 6047  (class class class)co 6811  infcinf 8510  cc 10124  cr 10125  0cc0 10126  1c1 10127   + caddc 10129   · cmul 10131   < clt 10264  cle 10265  cmin 10456   / cdiv 10874  cn 11210  2c2 11260  0cn0 11482  cz 11567  cuz 11877  +crp 12023  ..^cfzo 12657  cfl 12783  cexp 13052  cdvds 15180  bitscbits 15341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-sup 8511  df-inf 8512  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-n0 11483  df-z 11568  df-uz 11878  df-rp 12024  df-fz 12518  df-fzo 12658  df-fl 12785  df-seq 12994  df-exp 13053  df-dvds 15181  df-bits 15344
This theorem is referenced by:  bitsfzo  15357
  Copyright terms: Public domain W3C validator