MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsp1o Structured version   Visualization version   GIF version

Theorem bitsp1o 15079
Description: The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsp1o ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁)))

Proof of Theorem bitsp1o
StepHypRef Expression
1 2z 11353 . . . . . 6 2 ∈ ℤ
21a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3 id 22 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
42, 3zmulcld 11432 . . . 4 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
54peano2zd 11429 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
6 bitsp1 15077 . . 3 ((((2 · 𝑁) + 1) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2)))))
75, 6sylan 488 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2)))))
8 2re 11034 . . . . . . . . . . . 12 2 ∈ ℝ
98a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 2 ∈ ℝ)
10 zre 11325 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
119, 10remulcld 10014 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℝ)
1211recnd 10012 . . . . . . . . 9 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
13 1cnd 10000 . . . . . . . . 9 (𝑁 ∈ ℤ → 1 ∈ ℂ)
14 2cnd 11037 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ∈ ℂ)
15 2ne0 11057 . . . . . . . . . 10 2 ≠ 0
1615a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ≠ 0)
1712, 13, 14, 16divdird 10783 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
18 zcn 11326 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1918, 14, 16divcan3d 10750 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁)
2019oveq1d 6619 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
2117, 20eqtrd 2655 . . . . . . 7 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
2221fveq2d 6152 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = (⌊‘(𝑁 + (1 / 2))))
23 0re 9984 . . . . . . . . 9 0 ∈ ℝ
24 halfre 11190 . . . . . . . . 9 (1 / 2) ∈ ℝ
25 halfgt0 11192 . . . . . . . . 9 0 < (1 / 2)
2623, 24, 25ltleii 10104 . . . . . . . 8 0 ≤ (1 / 2)
27 halflt1 11194 . . . . . . . 8 (1 / 2) < 1
2826, 27pm3.2i 471 . . . . . . 7 (0 ≤ (1 / 2) ∧ (1 / 2) < 1)
29 flbi2 12558 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
3024, 29mpan2 706 . . . . . . 7 (𝑁 ∈ ℤ → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
3128, 30mpbiri 248 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(𝑁 + (1 / 2))) = 𝑁)
3222, 31eqtrd 2655 . . . . 5 (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁)
3332adantr 481 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁)
3433fveq2d 6152 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) = (bits‘𝑁))
3534eleq2d 2684 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) ↔ 𝑀 ∈ (bits‘𝑁)))
367, 35bitrd 268 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019   / cdiv 10628  2c2 11014  0cn0 11236  cz 11321  cfl 12531  bitscbits 15065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fl 12533  df-seq 12742  df-exp 12801  df-bits 15068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator