MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsshft Structured version   Visualization version   GIF version

Theorem bitsshft 15320
Description: Shifting a bit sequence to the left (toward the more significant bits) causes the number to be multiplied by a power of two. (Contributed by Mario Carneiro, 22-Sep-2016.)
Assertion
Ref Expression
bitsshft ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁

Proof of Theorem bitsshft
StepHypRef Expression
1 bitsss 15271 . . 3 (bits‘(𝐴 · (2↑𝑁))) ⊆ ℕ0
2 sseqin2 3925 . . 3 ((bits‘(𝐴 · (2↑𝑁))) ⊆ ℕ0 ↔ (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = (bits‘(𝐴 · (2↑𝑁))))
31, 2mpbi 220 . 2 (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = (bits‘(𝐴 · (2↑𝑁)))
4 simpll 807 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ ℤ)
5 2nn 11298 . . . . . . . . . . 11 2 ∈ ℕ
65a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℕ)
7 simplr 809 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℕ0)
86, 7nnexpcld 13145 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
98nnzd 11594 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
10 dvdsmul2 15127 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2↑𝑁) ∥ (𝐴 · (2↑𝑁)))
114, 9, 10syl2anc 696 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∥ (𝐴 · (2↑𝑁)))
124, 9zmulcld 11601 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 · (2↑𝑁)) ∈ ℤ)
13 bitsuz 15319 . . . . . . . 8 (((𝐴 · (2↑𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ (𝐴 · (2↑𝑁)) ↔ (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁)))
1412, 7, 13syl2anc 696 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((2↑𝑁) ∥ (𝐴 · (2↑𝑁)) ↔ (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁)))
1511, 14mpbid 222 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁))
1615sseld 3708 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) → 𝑛 ∈ (ℤ𝑁)))
17 uznn0sub 11833 . . . . 5 (𝑛 ∈ (ℤ𝑁) → (𝑛𝑁) ∈ ℕ0)
1816, 17syl6 35 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) → (𝑛𝑁) ∈ ℕ0))
19 bitsss 15271 . . . . . 6 (bits‘𝐴) ⊆ ℕ0
2019a1i 11 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
2120sseld 3708 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝑁) ∈ (bits‘𝐴) → (𝑛𝑁) ∈ ℕ0))
22 2cnd 11206 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ∈ ℂ)
235a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ∈ ℕ)
2423nnne0d 11178 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ≠ 0)
25 simplr 809 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑁 ∈ ℕ0)
2625nn0zd 11593 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑁 ∈ ℤ)
27 simprl 811 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑛 ∈ ℕ0)
2827nn0zd 11593 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑛 ∈ ℤ)
2922, 24, 26, 28expsubd 13134 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑(𝑛𝑁)) = ((2↑𝑛) / (2↑𝑁)))
3029oveq2d 6781 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 / (2↑(𝑛𝑁))) = (𝐴 / ((2↑𝑛) / (2↑𝑁))))
31 simpl 474 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
3231zcnd 11596 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
3332adantr 472 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝐴 ∈ ℂ)
3423, 27nnexpcld 13145 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ∈ ℕ)
3534nncnd 11149 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ∈ ℂ)
3623, 25nnexpcld 13145 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ∈ ℕ)
3736nncnd 11149 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ∈ ℂ)
3834nnne0d 11178 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ≠ 0)
3936nnne0d 11178 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ≠ 0)
4033, 35, 37, 38, 39divdiv2d 10946 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 / ((2↑𝑛) / (2↑𝑁))) = ((𝐴 · (2↑𝑁)) / (2↑𝑛)))
4130, 40eqtr2d 2759 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → ((𝐴 · (2↑𝑁)) / (2↑𝑛)) = (𝐴 / (2↑(𝑛𝑁))))
4241fveq2d 6308 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) = (⌊‘(𝐴 / (2↑(𝑛𝑁)))))
4342breq2d 4772 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) ↔ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4443notbid 307 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4512adantrr 755 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 · (2↑𝑁)) ∈ ℤ)
46 bitsval2 15270 . . . . . . 7 (((𝐴 · (2↑𝑁)) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ ¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛)))))
4745, 27, 46syl2anc 696 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ ¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛)))))
48 bitsval2 15270 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑛𝑁) ∈ ℕ0) → ((𝑛𝑁) ∈ (bits‘𝐴) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4948ad2ant2rl 802 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → ((𝑛𝑁) ∈ (bits‘𝐴) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
5044, 47, 493bitr4d 300 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴)))
5150expr 644 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝑁) ∈ ℕ0 → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴))))
5218, 21, 51pm5.21ndd 368 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴)))
5352rabbi2dva 3929 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)})
543, 53syl5reqr 2773 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  {crab 3018  cin 3679  wss 3680   class class class wbr 4760  cfv 6001  (class class class)co 6765  cc 10047   · cmul 10054  cmin 10379   / cdiv 10797  cn 11133  2c2 11183  0cn0 11405  cz 11490  cuz 11800  cfl 12706  cexp 12975  cdvds 15103  bitscbits 15264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1578  df-tru 1599  df-fal 1602  df-had 1646  df-cad 1659  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-disj 4729  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-xnn0 11477  df-z 11491  df-uz 11801  df-rp 11947  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-hash 13233  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-clim 14339  df-sum 14537  df-dvds 15104  df-bits 15267  df-sad 15296
This theorem is referenced by:  smumullem  15337
  Copyright terms: Public domain W3C validator