Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0int Structured version   Visualization version   GIF version

Theorem bj-0int 34395
Description: If 𝐴 is a collection of subsets of 𝑋, like a Moore collection or a topology, two equivalent ways to say that arbitrary intersections of elements of 𝐴 relative to 𝑋 belong to some class 𝐵: the LHS singles out the empty intersection (the empty intersection relative to 𝑋 is 𝑋 and the intersection of a nonempty family of subsets of 𝑋 is included in 𝑋, so there is no need to intersect it with 𝑋). In typical applications, 𝐵 is 𝐴 itself. (Contributed by BJ, 7-Dec-2021.)
Assertion
Ref Expression
bj-0int (𝐴 ⊆ 𝒫 𝑋 → ((𝑋𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅}) 𝑥𝐵) ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑋 𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑋

Proof of Theorem bj-0int
StepHypRef Expression
1 ssv 3993 . . . . . . . . 9 𝑋 ⊆ V
2 int0 4892 . . . . . . . . 9 ∅ = V
31, 2sseqtrri 4006 . . . . . . . 8 𝑋
4 df-ss 3954 . . . . . . . 8 (𝑋 ∅ ↔ (𝑋 ∅) = 𝑋)
53, 4mpbi 232 . . . . . . 7 (𝑋 ∅) = 𝑋
65eqcomi 2832 . . . . . 6 𝑋 = (𝑋 ∅)
76eleq1i 2905 . . . . 5 (𝑋𝐵 ↔ (𝑋 ∅) ∈ 𝐵)
87a1i 11 . . . 4 (𝐴 ⊆ 𝒫 𝑋 → (𝑋𝐵 ↔ (𝑋 ∅) ∈ 𝐵))
9 eldifsn 4721 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ≠ ∅))
10 sstr2 3976 . . . . . . . . . . 11 (𝑥𝐴 → (𝐴 ⊆ 𝒫 𝑋𝑥 ⊆ 𝒫 𝑋))
11 bj-intss 34393 . . . . . . . . . . 11 (𝑥 ⊆ 𝒫 𝑋 → (𝑥 ≠ ∅ → 𝑥𝑋))
1210, 11syl6 35 . . . . . . . . . 10 (𝑥𝐴 → (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ≠ ∅ → 𝑥𝑋)))
13 elpwi 4550 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1412, 13syl11 33 . . . . . . . . 9 (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ∈ 𝒫 𝐴 → (𝑥 ≠ ∅ → 𝑥𝑋)))
1514impd 413 . . . . . . . 8 (𝐴 ⊆ 𝒫 𝑋 → ((𝑥 ∈ 𝒫 𝐴𝑥 ≠ ∅) → 𝑥𝑋))
169, 15syl5bi 244 . . . . . . 7 (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥𝑋))
17 df-ss 3954 . . . . . . . . 9 ( 𝑥𝑋 ↔ ( 𝑥𝑋) = 𝑥)
18 incom 4180 . . . . . . . . . . 11 ( 𝑥𝑋) = (𝑋 𝑥)
1918eqeq1i 2828 . . . . . . . . . 10 (( 𝑥𝑋) = 𝑥 ↔ (𝑋 𝑥) = 𝑥)
20 eqcom 2830 . . . . . . . . . 10 ((𝑋 𝑥) = 𝑥 𝑥 = (𝑋 𝑥))
2119, 20sylbb 221 . . . . . . . . 9 (( 𝑥𝑋) = 𝑥 𝑥 = (𝑋 𝑥))
2217, 21sylbi 219 . . . . . . . 8 ( 𝑥𝑋 𝑥 = (𝑋 𝑥))
23 eleq1 2902 . . . . . . . . 9 ( 𝑥 = (𝑋 𝑥) → ( 𝑥𝐵 ↔ (𝑋 𝑥) ∈ 𝐵))
2423a1i 11 . . . . . . . 8 (𝐴 ⊆ 𝒫 𝑋 → ( 𝑥 = (𝑋 𝑥) → ( 𝑥𝐵 ↔ (𝑋 𝑥) ∈ 𝐵)))
2522, 24syl5 34 . . . . . . 7 (𝐴 ⊆ 𝒫 𝑋 → ( 𝑥𝑋 → ( 𝑥𝐵 ↔ (𝑋 𝑥) ∈ 𝐵)))
2616, 25syld 47 . . . . . 6 (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ( 𝑥𝐵 ↔ (𝑋 𝑥) ∈ 𝐵)))
2726ralrimiv 3183 . . . . 5 (𝐴 ⊆ 𝒫 𝑋 → ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})( 𝑥𝐵 ↔ (𝑋 𝑥) ∈ 𝐵))
28 ralbi 3169 . . . . 5 (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})( 𝑥𝐵 ↔ (𝑋 𝑥) ∈ 𝐵) → (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅}) 𝑥𝐵 ↔ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵))
2927, 28syl 17 . . . 4 (𝐴 ⊆ 𝒫 𝑋 → (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅}) 𝑥𝐵 ↔ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵))
308, 29anbi12d 632 . . 3 (𝐴 ⊆ 𝒫 𝑋 → ((𝑋𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅}) 𝑥𝐵) ↔ ((𝑋 ∅) ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵)))
3130biancomd 466 . 2 (𝐴 ⊆ 𝒫 𝑋 → ((𝑋𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅}) 𝑥𝐵) ↔ (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵 ∧ (𝑋 ∅) ∈ 𝐵)))
32 0elpw 5258 . . 3 ∅ ∈ 𝒫 𝐴
33 inteq 4881 . . . . 5 (𝑥 = ∅ → 𝑥 = ∅)
34 ineq2 4185 . . . . 5 ( 𝑥 = ∅ → (𝑋 𝑥) = (𝑋 ∅))
35 eleq1 2902 . . . . 5 ((𝑋 𝑥) = (𝑋 ∅) → ((𝑋 𝑥) ∈ 𝐵 ↔ (𝑋 ∅) ∈ 𝐵))
3633, 34, 353syl 18 . . . 4 (𝑥 = ∅ → ((𝑋 𝑥) ∈ 𝐵 ↔ (𝑋 ∅) ∈ 𝐵))
3736bj-raldifsn 34394 . . 3 (∅ ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴(𝑋 𝑥) ∈ 𝐵 ↔ (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵 ∧ (𝑋 ∅) ∈ 𝐵)))
3832, 37ax-mp 5 . 2 (∀𝑥 ∈ 𝒫 𝐴(𝑋 𝑥) ∈ 𝐵 ↔ (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵 ∧ (𝑋 ∅) ∈ 𝐵))
3931, 38syl6bbr 291 1 (𝐴 ⊆ 𝒫 𝑋 → ((𝑋𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅}) 𝑥𝐵) ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑋 𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cint 4878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-nul 5212
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-pw 4543  df-sn 4570  df-uni 4841  df-int 4879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator