![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1uplex | Structured version Visualization version GIF version |
Description: A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1uplex | ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-pr11val 33297 | . . 3 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
2 | bj-pr1ex 33298 | . . 3 ⊢ (⦅𝐴⦆ ∈ V → pr1 ⦅𝐴⦆ ∈ V) | |
3 | 1, 2 | syl5eqelr 2842 | . 2 ⊢ (⦅𝐴⦆ ∈ V → 𝐴 ∈ V) |
4 | df-bj-1upl 33290 | . . 3 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
5 | p0ex 5000 | . . . 4 ⊢ {∅} ∈ V | |
6 | bj-xtagex 33281 | . . . 4 ⊢ ({∅} ∈ V → (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V) |
8 | 4, 7 | syl5eqel 2841 | . 2 ⊢ (𝐴 ∈ V → ⦅𝐴⦆ ∈ V) |
9 | 3, 8 | impbii 199 | 1 ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2137 Vcvv 3338 ∅c0 4056 {csn 4319 × cxp 5262 tag bj-ctag 33266 ⦅bj-c1upl 33289 pr1 bj-cpr1 33292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-xp 5270 df-rel 5271 df-cnv 5272 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-bj-sngl 33258 df-bj-tag 33267 df-bj-proj 33283 df-bj-1upl 33290 df-bj-pr1 33293 |
This theorem is referenced by: bj-2uplex 33314 |
Copyright terms: Public domain | W3C validator |