Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1upln0 Structured version   Visualization version   GIF version

Theorem bj-1upln0 32665
Description: A monuple is nonempty. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1upln0 𝐴⦆ ≠ ∅

Proof of Theorem bj-1upln0
StepHypRef Expression
1 df-bj-1upl 32654 . 2 𝐴⦆ = ({∅} × tag 𝐴)
2 0nep0 4798 . . . 4 ∅ ≠ {∅}
32necomi 2844 . . 3 {∅} ≠ ∅
4 bj-tagn0 32635 . . 3 tag 𝐴 ≠ ∅
5 xpnz 5514 . . . 4 (({∅} ≠ ∅ ∧ tag 𝐴 ≠ ∅) ↔ ({∅} × tag 𝐴) ≠ ∅)
65biimpi 206 . . 3 (({∅} ≠ ∅ ∧ tag 𝐴 ≠ ∅) → ({∅} × tag 𝐴) ≠ ∅)
73, 4, 6mp2an 707 . 2 ({∅} × tag 𝐴) ≠ ∅
81, 7eqnetri 2860 1 𝐴⦆ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wa 384  wne 2790  c0 3893  {csn 4150   × cxp 5074  tag bj-ctag 32630  bj-c1upl 32653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pr 4869
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-op 4157  df-br 4616  df-opab 4676  df-xp 5082  df-rel 5083  df-cnv 5084  df-bj-tag 32631  df-bj-1upl 32654
This theorem is referenced by:  bj-2upln0  32679
  Copyright terms: Public domain W3C validator