Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1uplth Structured version   Visualization version   GIF version

Theorem bj-1uplth 32639
Description: The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1uplth (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵)

Proof of Theorem bj-1uplth
StepHypRef Expression
1 bj-pr1eq 32634 . . 3 (⦅𝐴⦆ = ⦅𝐵⦆ → pr1𝐴⦆ = pr1𝐵⦆)
2 bj-pr11val 32637 . . 3 pr1𝐴⦆ = 𝐴
3 bj-pr11val 32637 . . 3 pr1𝐵⦆ = 𝐵
41, 2, 33eqtr3g 2678 . 2 (⦅𝐴⦆ = ⦅𝐵⦆ → 𝐴 = 𝐵)
5 bj-1upleq 32631 . 2 (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)
64, 5impbii 199 1 (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1480  bj-c1upl 32629  pr1 bj-cpr1 32632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-xp 5080  df-rel 5081  df-cnv 5082  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-bj-sngl 32598  df-bj-tag 32607  df-bj-proj 32623  df-bj-1upl 32630  df-bj-pr1 32633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator