Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2ex Structured version   Visualization version   GIF version

Theorem bj-2ex 32583
Description: 2𝑜 is a set. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-2ex 2𝑜 ∈ V

Proof of Theorem bj-2ex
StepHypRef Expression
1 df-2o 7506 . 2 2𝑜 = suc 1𝑜
2 bj-1ex 32582 . . 3 1𝑜 ∈ V
32sucex 6958 . 2 suc 1𝑜 ∈ V
41, 3eqeltri 2694 1 2𝑜 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 1987  Vcvv 3186  suc csuc 5684  1𝑜c1o 7498  2𝑜c2o 7499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rex 2913  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-sn 4149  df-pr 4151  df-uni 4403  df-suc 5688  df-1o 7505  df-2o 7506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator