Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2ex Structured version   Visualization version   GIF version

Theorem bj-2ex 33237
Description: 2𝑜 is a set. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-2ex 2𝑜 ∈ V

Proof of Theorem bj-2ex
StepHypRef Expression
1 df-2o 7722 . 2 2𝑜 = suc 1𝑜
2 bj-1ex 33236 . . 3 1𝑜 ∈ V
32sucex 7168 . 2 suc 1𝑜 ∈ V
41, 3eqeltri 2827 1 2𝑜 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2131  Vcvv 3332  suc csuc 5878  1𝑜c1o 7714  2𝑜c2o 7715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-rex 3048  df-v 3334  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-sn 4314  df-pr 4316  df-uni 4581  df-suc 5882  df-1o 7721  df-2o 7722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator