Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ab0 Structured version   Visualization version   GIF version

Theorem bj-ab0 32546
Description: The class of sets verifying a falsity is the empty set (closed form of abf 3950). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ab0 (∀𝑥 ¬ 𝜑 → {𝑥𝜑} = ∅)

Proof of Theorem bj-ab0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-5 1836 . . 3 (∀𝑥 ¬ 𝜑 → ∀𝑦𝑥 ¬ 𝜑)
2 bj-stdpc4v 32394 . . . . 5 (∀𝑥 ¬ 𝜑 → [𝑦 / 𝑥] ¬ 𝜑)
3 sbn 2390 . . . . 5 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
42, 3sylib 208 . . . 4 (∀𝑥 ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑)
5 df-clab 2608 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
64, 5sylnibr 319 . . 3 (∀𝑥 ¬ 𝜑 → ¬ 𝑦 ∈ {𝑥𝜑})
71, 6alrimih 1748 . 2 (∀𝑥 ¬ 𝜑 → ∀𝑦 ¬ 𝑦 ∈ {𝑥𝜑})
8 eq0 3905 . 2 ({𝑥𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥𝜑})
97, 8sylibr 224 1 (∀𝑥 ¬ 𝜑 → {𝑥𝜑} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1478   = wceq 1480  [wsb 1877  wcel 1987  {cab 2607  c0 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3188  df-dif 3558  df-nul 3892
This theorem is referenced by:  bj-abf  32547  bj-csbprc  32548
  Copyright terms: Public domain W3C validator