Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abid2 Structured version   Visualization version   GIF version

Theorem bj-abid2 32907
 Description: Remove dependency on ax-13 2282 from abid2 2774. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abid2 {𝑥𝑥𝐴} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-abid2
StepHypRef Expression
1 biid 251 . . 3 (𝑥𝐴𝑥𝐴)
21bj-abbi2i 32901 . 2 𝐴 = {𝑥𝑥𝐴}
32eqcomi 2660 1 {𝑥𝑥𝐴} = 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1523   ∈ wcel 2030  {cab 2637 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator