Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax6e Structured version   Visualization version   GIF version

Theorem bj-ax6e 32348
 Description: Proof of ax6e 2249 (hence ax6 2250) from Tarski's system, ax-c9 33694, ax-c16 33696. Remark: ax-6 1885 is used only via its principal (unbundled) instance ax6v 1886. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-ax6e 𝑥 𝑥 = 𝑦

Proof of Theorem bj-ax6e
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 19.2 1889 . . . 4 (∀𝑥 𝑥 = 𝑦 → ∃𝑥 𝑥 = 𝑦)
21a1d 25 . . 3 (∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦))
3 bj-ax6elem1 32346 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
4 bj-ax6elem2 32347 . . . 4 (∀𝑥 𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦)
53, 4syl6 35 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦))
62, 5pm2.61i 176 . 2 (𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦)
7 ax6evr 1939 . 2 𝑧 𝑦 = 𝑧
86, 7exlimiiv 1856 1 𝑥 𝑥 = 𝑦
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1478  ∃wex 1701 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-12 2044  ax-13 2245 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator