Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax6elem2 Structured version   Visualization version   GIF version

Theorem bj-ax6elem2 32627
Description: Lemma for bj-ax6e 32628. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ax6elem2 (∀𝑥 𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑧

Proof of Theorem bj-ax6elem2
StepHypRef Expression
1 ax6ev 1888 . . 3 𝑥 𝑥 = 𝑧
2 equeucl 1949 . . 3 (𝑥 = 𝑧 → (𝑦 = 𝑧𝑥 = 𝑦))
31, 2eximii 1762 . 2 𝑥(𝑦 = 𝑧𝑥 = 𝑦)
4319.35i 1804 1 (∀𝑥 𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1479  wex 1702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1703
This theorem is referenced by:  bj-ax6e  32628
  Copyright terms: Public domain W3C validator