Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axc11nv Structured version   Visualization version   GIF version

Theorem bj-axc11nv 32729
Description: Version of axc11n 2306 with a dv condition; instance of aevlem 1980. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axc11nv (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-axc11nv
StepHypRef Expression
1 aevlem 1980 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1704
This theorem is referenced by:  bj-aecomsv  32730
  Copyright terms: Public domain W3C validator