![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axc14nf | Structured version Visualization version GIF version |
Description: Proof of a version of axc14 2400 using the "non-free" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-axc14nf | ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnae 2351 | . 2 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑥 | |
2 | bj-nfeel2 32962 | . 2 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧 𝑥 ∈ 𝑡) | |
3 | elequ2 2044 | . 2 ⊢ (𝑡 = 𝑦 → (𝑥 ∈ 𝑡 ↔ 𝑥 ∈ 𝑦)) | |
4 | 1, 2, 3 | bj-dvelimdv1 32960 | 1 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1521 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 |
This theorem is referenced by: bj-axc14 32964 |
Copyright terms: Public domain | W3C validator |