Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axrep3 Structured version   Visualization version   GIF version

Theorem bj-axrep3 32433
 Description: Remove dependency on ax-13 2245 from axrep3 4734. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axrep3 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem bj-axrep3
StepHypRef Expression
1 nfe1 2024 . . . 4 𝑦𝑦𝑧(𝜑𝑧 = 𝑦)
2 nfv 1840 . . . . . 6 𝑦 𝑧𝑥
3 nfv 1840 . . . . . . . 8 𝑦 𝑥𝑤
4 nfa1 2025 . . . . . . . 8 𝑦𝑦𝜑
53, 4nfan 1825 . . . . . . 7 𝑦(𝑥𝑤 ∧ ∀𝑦𝜑)
65nfex 2151 . . . . . 6 𝑦𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)
72, 6nfbi 1830 . . . . 5 𝑦(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))
87nfal 2150 . . . 4 𝑦𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))
91, 8nfim 1822 . . 3 𝑦(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
109nfex 2151 . 2 𝑦𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
11 elequ2 2001 . . . . . . . 8 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
1211anbi1d 740 . . . . . . 7 (𝑦 = 𝑤 → ((𝑥𝑦 ∧ ∀𝑦𝜑) ↔ (𝑥𝑤 ∧ ∀𝑦𝜑)))
1312exbidv 1847 . . . . . 6 (𝑦 = 𝑤 → (∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑) ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
1413bibi2d 332 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))))
1514albidv 1846 . . . 4 (𝑦 = 𝑤 → (∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))))
1615imbi2d 330 . . 3 (𝑦 = 𝑤 → ((∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ (∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))))
1716exbidv 1847 . 2 (𝑦 = 𝑤 → (∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))))
18 bj-axrep2 32432 . 2 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑)))
1910, 17, 18bj-chvarv 32367 1 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1478  ∃wex 1701 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-rep 4731 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707 This theorem is referenced by:  bj-axrep4  32434
 Copyright terms: Public domain W3C validator