Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axrep5 Structured version   Visualization version   GIF version

Theorem bj-axrep5 32456
Description: Remove dependency on ax-13 2245 from axrep5 4738. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-axrep5.1 𝑧𝜑
Assertion
Ref Expression
bj-axrep5 (∀𝑥(𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem bj-axrep5
StepHypRef Expression
1 19.37v 1907 . . . . 5 (∃𝑧(𝑥𝑤 → ∀𝑦(𝜑𝑦 = 𝑧)) ↔ (𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)))
2 impexp 462 . . . . . . . 8 (((𝑥𝑤𝜑) → 𝑦 = 𝑧) ↔ (𝑥𝑤 → (𝜑𝑦 = 𝑧)))
32albii 1744 . . . . . . 7 (∀𝑦((𝑥𝑤𝜑) → 𝑦 = 𝑧) ↔ ∀𝑦(𝑥𝑤 → (𝜑𝑦 = 𝑧)))
4 19.21v 1865 . . . . . . 7 (∀𝑦(𝑥𝑤 → (𝜑𝑦 = 𝑧)) ↔ (𝑥𝑤 → ∀𝑦(𝜑𝑦 = 𝑧)))
53, 4bitr2i 265 . . . . . 6 ((𝑥𝑤 → ∀𝑦(𝜑𝑦 = 𝑧)) ↔ ∀𝑦((𝑥𝑤𝜑) → 𝑦 = 𝑧))
65exbii 1771 . . . . 5 (∃𝑧(𝑥𝑤 → ∀𝑦(𝜑𝑦 = 𝑧)) ↔ ∃𝑧𝑦((𝑥𝑤𝜑) → 𝑦 = 𝑧))
71, 6bitr3i 266 . . . 4 ((𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)) ↔ ∃𝑧𝑦((𝑥𝑤𝜑) → 𝑦 = 𝑧))
87albii 1744 . . 3 (∀𝑥(𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)) ↔ ∀𝑥𝑧𝑦((𝑥𝑤𝜑) → 𝑦 = 𝑧))
9 nfv 1840 . . . . 5 𝑧 𝑥𝑤
10 bj-axrep5.1 . . . . 5 𝑧𝜑
119, 10nfan 1825 . . . 4 𝑧(𝑥𝑤𝜑)
1211bj-axrep4 32455 . . 3 (∀𝑥𝑧𝑦((𝑥𝑤𝜑) → 𝑦 = 𝑧) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ (𝑥𝑤𝜑))))
138, 12sylbi 207 . 2 (∀𝑥(𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ (𝑥𝑤𝜑))))
14 anabs5 850 . . . . . 6 ((𝑥𝑤 ∧ (𝑥𝑤𝜑)) ↔ (𝑥𝑤𝜑))
1514exbii 1771 . . . . 5 (∃𝑥(𝑥𝑤 ∧ (𝑥𝑤𝜑)) ↔ ∃𝑥(𝑥𝑤𝜑))
1615bibi2i 327 . . . 4 ((𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ (𝑥𝑤𝜑))) ↔ (𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
1716albii 1744 . . 3 (∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ (𝑥𝑤𝜑))) ↔ ∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
1817exbii 1771 . 2 (∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ (𝑥𝑤𝜑))) ↔ ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
1913, 18sylib 208 1 (∀𝑥(𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1478  wex 1701  wnf 1705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-rep 4733
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707
This theorem is referenced by:  bj-axsep  32457
  Copyright terms: Public domain W3C validator