Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1 Structured version   Visualization version   GIF version

Theorem bj-bary1 34587
Description: Barycentric coordinates in one dimension (complex line). In the statement, 𝑋 is the barycenter of the two points 𝐴, 𝐵 with respective normalized coefficients 𝑆, 𝑇. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
bj-bary1.s (𝜑𝑆 ∈ ℂ)
bj-bary1.t (𝜑𝑇 ∈ ℂ)
Assertion
Ref Expression
bj-bary1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) ↔ (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))

Proof of Theorem bj-bary1
StepHypRef Expression
1 bj-bary1.s . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
2 bj-bary1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
31, 2mulcld 10655 . . . . . . . 8 (𝜑 → (𝑆 · 𝐴) ∈ ℂ)
4 bj-bary1.t . . . . . . . . 9 (𝜑𝑇 ∈ ℂ)
5 bj-bary1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
64, 5mulcld 10655 . . . . . . . 8 (𝜑 → (𝑇 · 𝐵) ∈ ℂ)
73, 6addcomd 10836 . . . . . . 7 (𝜑 → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + (𝑆 · 𝐴)))
87eqeq2d 2832 . . . . . 6 (𝜑 → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ↔ 𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴))))
98biimpd 231 . . . . 5 (𝜑 → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) → 𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴))))
101, 4addcomd 10836 . . . . . . 7 (𝜑 → (𝑆 + 𝑇) = (𝑇 + 𝑆))
1110eqeq1d 2823 . . . . . 6 (𝜑 → ((𝑆 + 𝑇) = 1 ↔ (𝑇 + 𝑆) = 1))
1211biimpd 231 . . . . 5 (𝜑 → ((𝑆 + 𝑇) = 1 → (𝑇 + 𝑆) = 1))
13 bj-bary1.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
14 bj-bary1.neq . . . . . . 7 (𝜑𝐴𝐵)
1514necomd 3071 . . . . . 6 (𝜑𝐵𝐴)
165, 2, 13, 15, 4, 1bj-bary1lem1 34586 . . . . 5 (𝜑 → ((𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴)) ∧ (𝑇 + 𝑆) = 1) → 𝑆 = ((𝑋𝐵) / (𝐴𝐵))))
179, 12, 16syl2and 609 . . . 4 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑆 = ((𝑋𝐵) / (𝐴𝐵))))
1813, 5, 2, 5, 14div2subd 11460 . . . . 5 (𝜑 → ((𝑋𝐵) / (𝐴𝐵)) = ((𝐵𝑋) / (𝐵𝐴)))
1918eqeq2d 2832 . . . 4 (𝜑 → (𝑆 = ((𝑋𝐵) / (𝐴𝐵)) ↔ 𝑆 = ((𝐵𝑋) / (𝐵𝐴))))
2017, 19sylibd 241 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑆 = ((𝐵𝑋) / (𝐵𝐴))))
212, 5, 13, 14, 1, 4bj-bary1lem1 34586 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
2220, 21jcad 515 . 2 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))
232, 5, 13, 14bj-bary1lem 34585 . . . 4 (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
24 oveq1 7157 . . . . . 6 (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) → (𝑆 · 𝐴) = (((𝐵𝑋) / (𝐵𝐴)) · 𝐴))
25 oveq1 7157 . . . . . 6 (𝑇 = ((𝑋𝐴) / (𝐵𝐴)) → (𝑇 · 𝐵) = (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))
2624, 25oveqan12d 7169 . . . . 5 ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
2726a1i 11 . . . 4 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))))
28 eqtr3 2843 . . . 4 ((𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)) ∧ ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))) → 𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)))
2923, 27, 28syl6an 682 . . 3 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → 𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵))))
30 oveq12 7159 . . . 4 ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑆 + 𝑇) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))))
315, 13subcld 10991 . . . . . . 7 (𝜑 → (𝐵𝑋) ∈ ℂ)
3213, 2subcld 10991 . . . . . . 7 (𝜑 → (𝑋𝐴) ∈ ℂ)
335, 2subcld 10991 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
345, 2, 15subne0d 11000 . . . . . . 7 (𝜑 → (𝐵𝐴) ≠ 0)
3531, 32, 33, 34divdird 11448 . . . . . 6 (𝜑 → (((𝐵𝑋) + (𝑋𝐴)) / (𝐵𝐴)) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))))
365, 13, 2npncand 11015 . . . . . . 7 (𝜑 → ((𝐵𝑋) + (𝑋𝐴)) = (𝐵𝐴))
3733, 34, 36diveq1bd 11458 . . . . . 6 (𝜑 → (((𝐵𝑋) + (𝑋𝐴)) / (𝐵𝐴)) = 1)
3835, 37eqtr3d 2858 . . . . 5 (𝜑 → (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))) = 1)
3938eqeq2d 2832 . . . 4 (𝜑 → ((𝑆 + 𝑇) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))) ↔ (𝑆 + 𝑇) = 1))
4030, 39syl5ib 246 . . 3 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑆 + 𝑇) = 1))
4129, 40jcad 515 . 2 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1)))
4222, 41impbid 214 1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) ↔ (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  (class class class)co 7150  cc 10529  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864   / cdiv 11291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator