Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftydisj Structured version   Visualization version   GIF version

Theorem bj-ccinftydisj 32725
Description: The circle at infinity is disjoint from the set of complex numbers. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-ccinftydisj (ℂ ∩ ℂ) = ∅

Proof of Theorem bj-ccinftydisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inftyexpidisj 32722 . . . 4 ¬ (inftyexpi ‘𝑦) ∈ ℂ
21nex 1728 . . 3 ¬ ∃𝑦(inftyexpi ‘𝑦) ∈ ℂ
3 elin 3779 . . . . . 6 (𝑥 ∈ (ℂ ∩ ℂ) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ))
4 df-bj-inftyexpi 32719 . . . . . . . . . . 11 inftyexpi = (𝑧 ∈ (-π(,]π) ↦ ⟨𝑧, ℂ⟩)
54funmpt2 5887 . . . . . . . . . 10 Fun inftyexpi
6 elrnrexdm 6320 . . . . . . . . . 10 (Fun inftyexpi → (𝑥 ∈ ran inftyexpi → ∃𝑦 ∈ dom inftyexpi 𝑥 = (inftyexpi ‘𝑦)))
75, 6ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran inftyexpi → ∃𝑦 ∈ dom inftyexpi 𝑥 = (inftyexpi ‘𝑦))
8 rexex 3001 . . . . . . . . 9 (∃𝑦 ∈ dom inftyexpi 𝑥 = (inftyexpi ‘𝑦) → ∃𝑦 𝑥 = (inftyexpi ‘𝑦))
97, 8syl 17 . . . . . . . 8 (𝑥 ∈ ran inftyexpi → ∃𝑦 𝑥 = (inftyexpi ‘𝑦))
10 df-bj-ccinfty 32724 . . . . . . . 8 = ran inftyexpi
119, 10eleq2s 2722 . . . . . . 7 (𝑥 ∈ ℂ → ∃𝑦 𝑥 = (inftyexpi ‘𝑦))
1211anim2i 592 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (inftyexpi ‘𝑦)))
133, 12sylbi 207 . . . . 5 (𝑥 ∈ (ℂ ∩ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (inftyexpi ‘𝑦)))
14 ancom 466 . . . . . 6 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (inftyexpi ‘𝑦)) ↔ (∃𝑦 𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ))
15 exancom 1785 . . . . . . 7 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)) ↔ ∃𝑦(𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ))
16 19.41v 1916 . . . . . . 7 (∃𝑦(𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ) ↔ (∃𝑦 𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ))
1715, 16bitri 264 . . . . . 6 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)) ↔ (∃𝑦 𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ))
1814, 17sylbb2 228 . . . . 5 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (inftyexpi ‘𝑦)) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)))
1913, 18syl 17 . . . 4 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)))
20 eleq1 2692 . . . . . 6 (𝑥 = (inftyexpi ‘𝑦) → (𝑥 ∈ ℂ ↔ (inftyexpi ‘𝑦) ∈ ℂ))
2120biimpac 503 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)) → (inftyexpi ‘𝑦) ∈ ℂ)
2221eximi 1759 . . . 4 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)) → ∃𝑦(inftyexpi ‘𝑦) ∈ ℂ)
2319, 22syl 17 . . 3 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(inftyexpi ‘𝑦) ∈ ℂ)
242, 23mto 188 . 2 ¬ 𝑥 ∈ (ℂ ∩ ℂ)
2524nel0 3913 1 (ℂ ∩ ℂ) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1992  wrex 2913  cin 3559  c0 3896  cop 4159  dom cdm 5079  ran crn 5080  Fun wfun 5844  cfv 5850  (class class class)co 6605  cc 9879  -cneg 10212  (,]cioc 12115  πcpi 14717  inftyexpi cinftyexpi 32718  cccinfty 32723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-reg 8442  ax-cnex 9937
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5813  df-fun 5852  df-fn 5853  df-fv 5858  df-c 9887  df-bj-inftyexpi 32719  df-bj-ccinfty 32724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator