Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-clabel Structured version   Visualization version   GIF version

Theorem bj-clabel 32461
 Description: Remove dependency on ax-13 2245 from clabel 2746 (note the absence of DV conditions among variables in the LHS). (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-clabel ({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
Distinct variable groups:   𝑦,𝐴   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem bj-clabel
StepHypRef Expression
1 df-clel 2617 . 2 ({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 = {𝑥𝜑} ∧ 𝑦𝐴))
2 bj-abeq2 32451 . . . 4 (𝑦 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝑦𝜑))
32anbi2ci 731 . . 3 ((𝑦 = {𝑥𝜑} ∧ 𝑦𝐴) ↔ (𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
43exbii 1771 . 2 (∃𝑦(𝑦 = {𝑥𝜑} ∧ 𝑦𝐴) ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
51, 4bitri 264 1 ({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384  ∀wal 1478   = wceq 1480  ∃wex 1701   ∈ wcel 1987  {cab 2607 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator