![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-df-ifc | Structured version Visualization version GIF version |
Description: The definition of "ifc" if "if-" enters the main part. This is in line with the definition of a class as the extension of a predicate in df-clab 2638. (Contributed by BJ, 20-Sep-2019.) |
Ref | Expression |
---|---|
bj-df-ifc | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-dfifc2 32689 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 ∈ 𝐵))} | |
2 | df-ifp 1033 | . . . 4 ⊢ (if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 ∈ 𝐵))) | |
3 | 2 | bicomi 214 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 ∈ 𝐵)) ↔ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)) |
4 | 3 | abbii 2768 | . 2 ⊢ {𝑥 ∣ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 ∈ 𝐵))} = {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} |
5 | 1, 4 | eqtri 2673 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 382 ∧ wa 383 if-wif 1032 = wceq 1523 ∈ wcel 2030 {cab 2637 ifcif 4119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1033 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-if 4120 |
This theorem is referenced by: bj-ififc 32691 |
Copyright terms: Public domain | W3C validator |