Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dvdemo2 Structured version   Visualization version   GIF version

Theorem bj-dvdemo2 31801
Description: Remove dependency on ax-13 2229 from dvdemo2 4822 (this removal is noteworthy since dvdemo1 4821 and dvdemo2 4822 illustrate the phenomenon of bundling). (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-dvdemo2 𝑥(𝑥 = 𝑦𝑧𝑥)
Distinct variable group:   𝑥,𝑧

Proof of Theorem bj-dvdemo2
StepHypRef Expression
1 bj-el 31794 . 2 𝑥 𝑧𝑥
2 ax-1 6 . 2 (𝑧𝑥 → (𝑥 = 𝑦𝑧𝑥))
31, 2eximii 1753 1 𝑥(𝑥 = 𝑦𝑧𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-pow 4761
This theorem depends on definitions:  df-bi 195  df-an 384  df-ex 1695  df-nf 1700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator