Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elccinfty Structured version   Visualization version   GIF version

Theorem bj-elccinfty 34498
Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-elccinfty (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) ∈ ℂ)

Proof of Theorem bj-elccinfty
StepHypRef Expression
1 df-bj-inftyexpi 34491 . . . . 5 +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
21funmpt2 6396 . . . 4 Fun +∞ei
32jctl 526 . . 3 (𝐴 ∈ dom +∞ei → (Fun +∞ei𝐴 ∈ dom +∞ei))
4 opex 5358 . . . . 5 𝑥, ℂ⟩ ∈ V
54, 1dmmpti 6494 . . . 4 dom +∞ei = (-π(,]π)
65eqcomi 2832 . . 3 (-π(,]π) = dom +∞ei
73, 6eleq2s 2933 . 2 (𝐴 ∈ (-π(,]π) → (Fun +∞ei𝐴 ∈ dom +∞ei))
8 fvelrn 6846 . 2 ((Fun +∞ei𝐴 ∈ dom +∞ei) → (+∞ei𝐴) ∈ ran +∞ei)
9 df-bj-ccinfty 34496 . . . . 5 = ran +∞ei
109eqcomi 2832 . . . 4 ran +∞ei = ℂ
1110eleq2i 2906 . . 3 ((+∞ei𝐴) ∈ ran +∞ei ↔ (+∞ei𝐴) ∈ ℂ)
1211biimpi 218 . 2 ((+∞ei𝐴) ∈ ran +∞ei → (+∞ei𝐴) ∈ ℂ)
137, 8, 123syl 18 1 (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  cop 4575  dom cdm 5557  ran crn 5558  Fun wfun 6351  cfv 6357  (class class class)co 7158  cc 10537  -cneg 10873  (,]cioc 12742  πcpi 15422  +∞eicinftyexpi 34490  cccinfty 34495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365  df-bj-inftyexpi 34491  df-bj-ccinfty 34496
This theorem is referenced by:  bj-pinftyccb  34505
  Copyright terms: Public domain W3C validator