 Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid2 Structured version   Visualization version   GIF version

Theorem bj-elid2 33216
 Description: Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-elid2 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))

Proof of Theorem bj-elid2
StepHypRef Expression
1 bj-elid 33215 . . 3 (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st𝐴) = (2nd𝐴)))
21simprbi 479 . 2 (𝐴 ∈ I → (1st𝐴) = (2nd𝐴))
3 xpss 5159 . . . 4 (𝑉 × 𝑊) ⊆ (V × V)
43sseli 3632 . . 3 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V))
51simplbi2 654 . . 3 (𝐴 ∈ (V × V) → ((1st𝐴) = (2nd𝐴) → 𝐴 ∈ I ))
64, 5syl 17 . 2 (𝐴 ∈ (𝑉 × 𝑊) → ((1st𝐴) = (2nd𝐴) → 𝐴 ∈ I ))
72, 6impbid2 216 1 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1523   ∈ wcel 2030  Vcvv 3231   I cid 5052   × cxp 5141  ‘cfv 5926  1st c1st 7208  2nd c2nd 7209 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-iota 5889  df-fun 5928  df-fv 5934  df-1st 7210  df-2nd 7211 This theorem is referenced by:  bj-eldiag  33221
 Copyright terms: Public domain W3C validator