![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elid3 | Structured version Visualization version GIF version |
Description: Characterization of the elements of I. (Contributed by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
bj-elid3 | ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-elid 33396 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (〈𝐴, 𝐵〉 ∈ (V × V) ∧ (1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉))) | |
2 | opelxp 5303 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | 2 | anbi1i 733 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ (V × V) ∧ (1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉)) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉))) |
4 | op1stg 7345 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
5 | op2ndg 7346 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
6 | 4, 5 | eqeq12d 2775 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉) ↔ 𝐴 = 𝐵)) |
7 | 6 | pm5.32i 672 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉)) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
8 | simpl 474 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
9 | 8 | anim1i 593 | . . . . 5 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
10 | simpl 474 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐴 ∈ V) | |
11 | eleq1 2827 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
12 | 11 | biimpac 504 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐵 ∈ V) |
13 | simpr 479 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
14 | 10, 12, 13 | jca31 558 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
15 | 9, 14 | impbii 199 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
16 | 7, 15 | bitri 264 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉)) ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
17 | 3, 16 | bitri 264 | . 2 ⊢ ((〈𝐴, 𝐵〉 ∈ (V × V) ∧ (1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉)) ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
18 | 1, 17 | bitri 264 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 〈cop 4327 I cid 5173 × cxp 5264 ‘cfv 6049 1st c1st 7331 2nd c2nd 7332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fv 6057 df-1st 7333 df-2nd 7334 |
This theorem is referenced by: bj-eldiag2 33403 |
Copyright terms: Public domain | W3C validator |