Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-equsal1 Structured version   Visualization version   GIF version

Theorem bj-equsal1 32481
Description: One direction of equsal 2290. (Contributed by BJ, 30-Sep-2018.)
Hypotheses
Ref Expression
bj-equsal1.1 𝑥𝜓
bj-equsal1.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-equsal1 (∀𝑥(𝑥 = 𝑦𝜑) → 𝜓)

Proof of Theorem bj-equsal1
StepHypRef Expression
1 bj-equsal1.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
21a2i 14 . . 3 ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓))
32alimi 1736 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜓))
4 bj-equsal1.1 . . 3 𝑥𝜓
54bj-equsal1ti 32480 . 2 (∀𝑥(𝑥 = 𝑦𝜓) ↔ 𝜓)
63, 5sylib 208 1 (∀𝑥(𝑥 = 𝑦𝜑) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1478  wnf 1705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-12 2044  ax-13 2245
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702  df-nf 1707
This theorem is referenced by:  bj-equsal  32483
  Copyright terms: Public domain W3C validator