Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-finsumval0 Structured version   Visualization version   GIF version

Theorem bj-finsumval0 32772
Description: Value of a finite sum. (Contributed by BJ, 9-Jun-2019.) (Proof shortened by AV, 5-May-2021.)
Hypotheses
Ref Expression
bj-finsumval0.1 (𝜑𝐴 ∈ CMnd)
bj-finsumval0.2 (𝜑𝐼 ∈ Fin)
bj-finsumval0.3 (𝜑𝐵:𝐼⟶(Base‘𝐴))
Assertion
Ref Expression
bj-finsumval0 (𝜑 → (𝐴 FinSum 𝐵) = (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)))))
Distinct variable groups:   𝐴,𝑠,𝑓,𝑚,𝑛   𝐵,𝑓,𝑚,𝑛,𝑠   𝑓,𝐼,𝑛   𝜑,𝑓,𝑚,𝑠
Allowed substitution hints:   𝜑(𝑛)   𝐼(𝑚,𝑠)

Proof of Theorem bj-finsumval0
Dummy variables 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6608 . 2 (𝐴 FinSum 𝐵) = ( FinSum ‘⟨𝐴, 𝐵⟩)
2 df-bj-finsum 32771 . . . 4 FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
32a1i 11 . . 3 (𝜑 → FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))))
4 simpr 477 . . . . . . . . . 10 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → 𝑥 = ⟨𝐴, 𝐵⟩)
54fveq2d 6154 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
6 bj-finsumval0.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ CMnd)
76adantr 481 . . . . . . . . . 10 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → 𝐴 ∈ CMnd)
8 bj-finsumval0.3 . . . . . . . . . . . 12 (𝜑𝐵:𝐼⟶(Base‘𝐴))
9 bj-finsumval0.2 . . . . . . . . . . . 12 (𝜑𝐼 ∈ Fin)
10 fex 6445 . . . . . . . . . . . 12 ((𝐵:𝐼⟶(Base‘𝐴) ∧ 𝐼 ∈ Fin) → 𝐵 ∈ V)
118, 9, 10syl2anc 692 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
1211adantr 481 . . . . . . . . . 10 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → 𝐵 ∈ V)
13 op1stg 7128 . . . . . . . . . 10 ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
147, 12, 13syl2anc 692 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
155, 14eqtrd 2660 . . . . . . . 8 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (1st𝑥) = 𝐴)
164fveq2d 6154 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
17 op2ndg 7129 . . . . . . . . . 10 ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
187, 12, 17syl2anc 692 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1916, 18eqtrd 2660 . . . . . . . 8 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (2nd𝑥) = 𝐵)
2019dmeqd 5291 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → dom (2nd𝑥) = dom 𝐵)
21 fdm 6010 . . . . . . . . . . 11 (𝐵:𝐼⟶(Base‘𝐴) → dom 𝐵 = 𝐼)
228, 21syl 17 . . . . . . . . . 10 (𝜑 → dom 𝐵 = 𝐼)
2322adantr 481 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → dom 𝐵 = 𝐼)
2420, 23eqtrd 2660 . . . . . . . 8 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → dom (2nd𝑥) = 𝐼)
25 f1oeq3 6088 . . . . . . . . . . . . . . 15 (dom (2nd𝑥) = 𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ↔ 𝑓:(1...𝑚)–1-1-onto𝐼))
2625biimpd 219 . . . . . . . . . . . . . 14 (dom (2nd𝑥) = 𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) → 𝑓:(1...𝑚)–1-1-onto𝐼))
2726ad2antll 764 . . . . . . . . . . . . 13 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) → 𝑓:(1...𝑚)–1-1-onto𝐼))
2827adantrd 484 . . . . . . . . . . . 12 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto𝐼))
2928adantr 481 . . . . . . . . . . 11 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto𝐼))
30 eqidd 2627 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 = 1)
31 simprl 793 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → (1st𝑥) = 𝐴)
3231fveq2d 6154 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → (+g‘(1st𝑥)) = (+g𝐴))
3332adantrr 752 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (+g‘(1st𝑥)) = (+g𝐴))
34 simprrl 803 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → (2nd𝑥) = 𝐵)
3534adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (2nd𝑥) = 𝐵)
3635fveq1d 6152 . . . . . . . . . . . . . . . . . . 19 (((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → ((2nd𝑥)‘(𝑓𝑛)) = (𝐵‘(𝑓𝑛)))
3736mpteq2dva 4709 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))
3837adantrr 752 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))
3930, 33, 38seqeq123d 12747 . . . . . . . . . . . . . . . 16 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛)))) = seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛)))))
40 simpr 477 . . . . . . . . . . . . . . . . . 18 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
41 simprr 795 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → dom (2nd𝑥) = 𝐼)
4241adantr 481 . . . . . . . . . . . . . . . . . 18 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → dom (2nd𝑥) = 𝐼)
4340, 42jca 554 . . . . . . . . . . . . . . . . 17 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼))
44 hashfz1 13071 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ0 → (#‘(1...𝑚)) = 𝑚)
4544eqcomd 2632 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ0𝑚 = (#‘(1...𝑚)))
4645ad2antrl 763 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → 𝑚 = (#‘(1...𝑚)))
47 fzfid 12709 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → (1...𝑚) ∈ Fin)
48 19.8a 2054 . . . . . . . . . . . . . . . . . . . 20 (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) → ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥))
4948adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥))
50 hasheqf1oi 13077 . . . . . . . . . . . . . . . . . . 19 ((1...𝑚) ∈ Fin → (∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) → (#‘(1...𝑚)) = (#‘dom (2nd𝑥))))
5147, 49, 50sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → (#‘(1...𝑚)) = (#‘dom (2nd𝑥)))
52 simprr 795 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → dom (2nd𝑥) = 𝐼)
5352fveq2d 6154 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → (#‘dom (2nd𝑥)) = (#‘𝐼))
5446, 51, 533eqtrd 2664 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → 𝑚 = (#‘𝐼))
5543, 54sylan2 491 . . . . . . . . . . . . . . . 16 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (#‘𝐼))
5639, 55fveq12d 6156 . . . . . . . . . . . . . . 15 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚) = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)))
5756eqeq2d 2636 . . . . . . . . . . . . . 14 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚) ↔ 𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼))))
5857biimpd 219 . . . . . . . . . . . . 13 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚) → 𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼))))
5958impancom 456 . . . . . . . . . . . 12 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼))))
6059com12 32 . . . . . . . . . . 11 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → 𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼))))
6129, 60jcad 555 . . . . . . . . . 10 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)))))
6225biimprd 238 . . . . . . . . . . . . . 14 (dom (2nd𝑥) = 𝐼 → (𝑓:(1...𝑚)–1-1-onto𝐼𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)))
6362ad2antll 764 . . . . . . . . . . . . 13 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto𝐼𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)))
6463adantr 481 . . . . . . . . . . . 12 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑓:(1...𝑚)–1-1-onto𝐼𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)))
6564adantrd 484 . . . . . . . . . . 11 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼))) → 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)))
66 eqidd 2627 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 = 1)
67 simpl 473 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → (1st𝑥) = 𝐴)
68 tru 1484 . . . . . . . . . . . . . . . . . . . . 21
6967, 68jctir 560 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → ((1st𝑥) = 𝐴 ∧ ⊤))
7069ad2antrl 763 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → ((1st𝑥) = 𝐴 ∧ ⊤))
71 simpl 473 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑥) = 𝐴 ∧ ⊤) → (1st𝑥) = 𝐴)
7271eqcomd 2632 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) = 𝐴 ∧ ⊤) → 𝐴 = (1st𝑥))
7370, 72syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝐴 = (1st𝑥))
7473fveq2d 6154 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (+g𝐴) = (+g‘(1st𝑥)))
75 simpl 473 . . . . . . . . . . . . . . . . . . . . . . 23 (((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼) → (2nd𝑥) = 𝐵)
7675eqcomd 2632 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼) → 𝐵 = (2nd𝑥))
7776ad2antll 764 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → 𝐵 = (2nd𝑥))
7877adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → 𝐵 = (2nd𝑥))
7978fveq1d 6152 . . . . . . . . . . . . . . . . . . 19 (((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓𝑛)) = ((2nd𝑥)‘(𝑓𝑛)))
8079adantlrr 756 . . . . . . . . . . . . . . . . . 18 (((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓𝑛)) = ((2nd𝑥)‘(𝑓𝑛)))
8180mpteq2dva 4709 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))
8266, 74, 81seqeq123d 12747 . . . . . . . . . . . . . . . 16 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛)))) = seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛)))))
8364impcom 446 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥))
84 simprr 795 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
8541ad2antrl 763 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → dom (2nd𝑥) = 𝐼)
8683, 84, 85, 54syl12anc 1321 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (#‘𝐼))
8786eqcomd 2632 . . . . . . . . . . . . . . . 16 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (#‘𝐼) = 𝑚)
8882, 87fveq12d 6156 . . . . . . . . . . . . . . 15 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)) = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))
8988eqeq2d 2636 . . . . . . . . . . . . . 14 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)) ↔ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
9089biimpd 219 . . . . . . . . . . . . 13 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)) → 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
9190impancom 456 . . . . . . . . . . . 12 ((𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼))) → ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
9291com12 32 . . . . . . . . . . 11 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼))) → 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
9365, 92jcad 555 . . . . . . . . . 10 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼))) → (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
9461, 93impbid 202 . . . . . . . . 9 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)))))
9594ex 450 . . . . . . . 8 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼))))))
9615, 19, 24, 95syl12anc 1321 . . . . . . 7 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼))))))
9796imp 445 . . . . . 6 (((𝜑𝑥 = ⟨𝐴, 𝐵⟩) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)))))
9897exbidv 1852 . . . . 5 (((𝜑𝑥 = ⟨𝐴, 𝐵⟩) ∧ 𝑚 ∈ ℕ0) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)))))
9998rexbidva 3047 . . . 4 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (∃𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ ∃𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)))))
10099iotabidv 5834 . . 3 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))) = (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)))))
101 eleq1 2692 . . . . . . . . . 10 (𝑡 = 𝐼 → (𝑡 ∈ Fin ↔ 𝐼 ∈ Fin))
102 feq2 5986 . . . . . . . . . 10 (𝑡 = 𝐼 → (𝐵:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝐼⟶(Base‘𝐴)))
103101, 102anbi12d 746 . . . . . . . . 9 (𝑡 = 𝐼 → ((𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴))))
104103ceqsexgv 3323 . . . . . . . 8 (𝐼 ∈ Fin → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴))))
1059, 104syl 17 . . . . . . 7 (𝜑 → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴))))
1069, 8, 105mpbir2and 956 . . . . . 6 (𝜑 → ∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))))
107 exsimpr 1795 . . . . . 6 (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))
108106, 107syl 17 . . . . 5 (𝜑 → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))
109 df-rex 2918 . . . . 5 (∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴) ↔ ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))
110108, 109sylibr 224 . . . 4 (𝜑 → ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))
111 eleq1 2692 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 ∈ CMnd ↔ 𝐴 ∈ CMnd))
112 fveq2 6150 . . . . . . . . 9 (𝑦 = 𝐴 → (Base‘𝑦) = (Base‘𝐴))
113112feq3d 5991 . . . . . . . 8 (𝑦 = 𝐴 → (𝑧:𝑡⟶(Base‘𝑦) ↔ 𝑧:𝑡⟶(Base‘𝐴)))
114113rexbidv 3050 . . . . . . 7 (𝑦 = 𝐴 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦) ↔ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)))
115111, 114anbi12d 746 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴))))
116 feq1 5985 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝑡⟶(Base‘𝐴)))
117116rexbidv 3050 . . . . . . 7 (𝑧 = 𝐵 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴) ↔ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))
118117anbi2d 739 . . . . . 6 (𝑧 = 𝐵 → ((𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))))
119115, 118opelopabg 4958 . . . . 5 ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))))
1206, 11, 119syl2anc 692 . . . 4 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))))
1216, 110, 120mpbir2and 956 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))})
122 iotaex 5830 . . . 4 (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)))) ∈ V
123122a1i 11 . . 3 (𝜑 → (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)))) ∈ V)
1243, 100, 121, 123fvmptd 6246 . 2 (𝜑 → ( FinSum ‘⟨𝐴, 𝐵⟩) = (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)))))
1251, 124syl5eq 2672 1 (𝜑 → (𝐴 FinSum 𝐵) = (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(#‘𝐼)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wtru 1481  wex 1701  wcel 1992  wrex 2913  Vcvv 3191  cop 4159  {copab 4677  cmpt 4678  dom cdm 5079  cio 5811  wf 5846  1-1-ontowf1o 5849  cfv 5850  (class class class)co 6605  1st c1st 7114  2nd c2nd 7115  Fincfn 7900  1c1 9882  cn 10965  0cn0 11237  ...cfz 12265  seqcseq 12738  #chash 13054  Basecbs 15776  +gcplusg 15857  CMndccmn 18109   FinSum cfinsum 32770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-seq 12739  df-hash 13055  df-bj-finsum 32771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator