Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbaeb2 Structured version   Visualization version   GIF version

Theorem bj-hbaeb2 31834
Description: Biconditional version of a form of hbae 2207 with commuted quantifiers, not requiring ax-11 1971. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-hbaeb2 (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥𝑧 𝑥 = 𝑦)

Proof of Theorem bj-hbaeb2
StepHypRef Expression
1 sp 1990 . . . . 5 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
2 axc9 2194 . . . . 5 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
31, 2syl7 71 . . . 4 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
4 axc11r 2136 . . . 4 (∀𝑧 𝑧 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
5 axc11 2206 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦))
65pm2.43i 49 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)
7 axc11r 2136 . . . . 5 (∀𝑧 𝑧 = 𝑦 → (∀𝑦 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
86, 7syl5 33 . . . 4 (∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
93, 4, 8pm2.61ii 175 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)
109axc4i 2028 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝑧 𝑥 = 𝑦)
11 sp 1990 . . 3 (∀𝑧 𝑥 = 𝑦𝑥 = 𝑦)
1211alimi 1715 . 2 (∀𝑥𝑧 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)
1310, 12impbii 197 1 (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥𝑧 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wal 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-12 1983  ax-13 2137
This theorem depends on definitions:  df-bi 195  df-an 384  df-ex 1695  df-nf 1699
This theorem is referenced by:  bj-hbaeb  31835  bj-dvv  31837
  Copyright terms: Public domain W3C validator