Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpidisj Structured version   Visualization version   GIF version

Theorem bj-inftyexpidisj 34494
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)
Assertion
Ref Expression
bj-inftyexpidisj ¬ (+∞ei𝐴) ∈ ℂ

Proof of Theorem bj-inftyexpidisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4805 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, ℂ⟩ = ⟨𝐴, ℂ⟩)
2 df-bj-inftyexpi 34491 . . . . 5 +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
3 opex 5358 . . . . 5 𝐴, ℂ⟩ ∈ V
41, 2, 3fvmpt 6770 . . . 4 (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) = ⟨𝐴, ℂ⟩)
5 opex 5358 . . . . 5 𝑥, ℂ⟩ ∈ V
65, 2dmmpti 6494 . . . 4 dom +∞ei = (-π(,]π)
74, 6eleq2s 2933 . . 3 (𝐴 ∈ dom +∞ei → (+∞ei𝐴) = ⟨𝐴, ℂ⟩)
8 cnex 10620 . . . . . . 7 ℂ ∈ V
98prid2 4701 . . . . . 6 ℂ ∈ {𝐴, ℂ}
10 eqid 2823 . . . . . . . 8 {𝐴, ℂ} = {𝐴, ℂ}
1110olci 862 . . . . . . 7 ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})
12 elopg 5360 . . . . . . . 8 ((𝐴 ∈ V ∧ ℂ ∈ V) → ({𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ↔ ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})))
138, 12mpan2 689 . . . . . . 7 (𝐴 ∈ V → ({𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ↔ ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})))
1411, 13mpbiri 260 . . . . . 6 (𝐴 ∈ V → {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩)
15 en3lp 9079 . . . . . . 7 ¬ (ℂ ∈ {𝐴, ℂ} ∧ {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ∧ ⟨𝐴, ℂ⟩ ∈ ℂ)
1615bj-imn3ani 33923 . . . . . 6 ((ℂ ∈ {𝐴, ℂ} ∧ {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩) → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
179, 14, 16sylancr 589 . . . . 5 (𝐴 ∈ V → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
18 opprc1 4829 . . . . . 6 𝐴 ∈ V → ⟨𝐴, ℂ⟩ = ∅)
19 0ncn 10557 . . . . . . 7 ¬ ∅ ∈ ℂ
20 eleq1 2902 . . . . . . 7 (⟨𝐴, ℂ⟩ = ∅ → (⟨𝐴, ℂ⟩ ∈ ℂ ↔ ∅ ∈ ℂ))
2119, 20mtbiri 329 . . . . . 6 (⟨𝐴, ℂ⟩ = ∅ → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
2218, 21syl 17 . . . . 5 𝐴 ∈ V → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
2317, 22pm2.61i 184 . . . 4 ¬ ⟨𝐴, ℂ⟩ ∈ ℂ
24 eqcom 2830 . . . . . 6 ((+∞ei𝐴) = ⟨𝐴, ℂ⟩ ↔ ⟨𝐴, ℂ⟩ = (+∞ei𝐴))
2524biimpi 218 . . . . 5 ((+∞ei𝐴) = ⟨𝐴, ℂ⟩ → ⟨𝐴, ℂ⟩ = (+∞ei𝐴))
2625eleq1d 2899 . . . 4 ((+∞ei𝐴) = ⟨𝐴, ℂ⟩ → (⟨𝐴, ℂ⟩ ∈ ℂ ↔ (+∞ei𝐴) ∈ ℂ))
2723, 26mtbii 328 . . 3 ((+∞ei𝐴) = ⟨𝐴, ℂ⟩ → ¬ (+∞ei𝐴) ∈ ℂ)
287, 27syl 17 . 2 (𝐴 ∈ dom +∞ei → ¬ (+∞ei𝐴) ∈ ℂ)
29 ndmfv 6702 . . . 4 𝐴 ∈ dom +∞ei → (+∞ei𝐴) = ∅)
3029eleq1d 2899 . . 3 𝐴 ∈ dom +∞ei → ((+∞ei𝐴) ∈ ℂ ↔ ∅ ∈ ℂ))
3119, 30mtbiri 329 . 2 𝐴 ∈ dom +∞ei → ¬ (+∞ei𝐴) ∈ ℂ)
3228, 31pm2.61i 184 1 ¬ (+∞ei𝐴) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wo 843   = wceq 1537  wcel 2114  Vcvv 3496  c0 4293  {csn 4569  {cpr 4571  cop 4575  dom cdm 5557  cfv 6357  (class class class)co 7158  cc 10537  -cneg 10873  (,]cioc 12742  πcpi 15422  +∞eicinftyexpi 34490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-reg 9058  ax-cnex 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365  df-c 10545  df-bj-inftyexpi 34491
This theorem is referenced by:  bj-ccinftydisj  34497  bj-pinftynrr  34506  bj-minftynrr  34510
  Copyright terms: Public domain W3C validator