![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nexdt | Structured version Visualization version GIF version |
Description: Closed form of nexd 2228. (Contributed by BJ, 20-Oct-2019.) |
Ref | Expression |
---|---|
bj-nexdt | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5r 2203 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
2 | bj-nexdh 32904 | . 2 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) → ((𝜑 → ∀𝑥𝜑) → (𝜑 → ¬ ∃𝑥𝜓))) | |
3 | 1, 2 | syl5com 31 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1622 ∃wex 1845 Ⅎwnf 1849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-12 2188 |
This theorem depends on definitions: df-bi 197 df-ex 1846 df-nf 1851 |
This theorem is referenced by: bj-nexdvt 32986 |
Copyright terms: Public domain | W3C validator |