Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfcf Structured version   Visualization version   GIF version

Theorem bj-nfcf 33222
Description: Version of df-nfc 2887 with a dv condition replaced with a non-freeness hypothesis. (Contributed by BJ, 2-May-2019.)
Hypothesis
Ref Expression
bj-nfcf.nf 𝑦𝐴
Assertion
Ref Expression
bj-nfcf (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem bj-nfcf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2887 . 2 (𝑥𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
2 bj-nfcf.nf . . . . . 6 𝑦𝐴
32nfcri 2892 . . . . 5 𝑦 𝑧𝐴
43nfnf 2301 . . . 4 𝑦𝑥 𝑧𝐴
54sb8 2557 . . 3 (∀𝑧𝑥 𝑧𝐴 ↔ ∀𝑦[𝑦 / 𝑧]Ⅎ𝑥 𝑧𝐴)
6 bj-sbnf 33130 . . . . 5 ([𝑦 / 𝑧]Ⅎ𝑥 𝑧𝐴 ↔ Ⅎ𝑥[𝑦 / 𝑧]𝑧𝐴)
7 clelsb3 2863 . . . . . 6 ([𝑦 / 𝑧]𝑧𝐴𝑦𝐴)
87nfbii 1923 . . . . 5 (Ⅎ𝑥[𝑦 / 𝑧]𝑧𝐴 ↔ Ⅎ𝑥 𝑦𝐴)
96, 8bitri 264 . . . 4 ([𝑦 / 𝑧]Ⅎ𝑥 𝑧𝐴 ↔ Ⅎ𝑥 𝑦𝐴)
109albii 1892 . . 3 (∀𝑦[𝑦 / 𝑧]Ⅎ𝑥 𝑧𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
115, 10bitri 264 . 2 (∀𝑧𝑥 𝑧𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
121, 11bitri 264 1 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wal 1626  wnf 1853  [wsb 2042  wcel 2135  wnfc 2885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-clel 2752  df-nfc 2887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator