Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfcri Structured version   Visualization version   GIF version

Theorem bj-nfcri 32827
Description: Remove dependency on ax-ext 2600 (and df-cleq 2613) from nfcri 2756. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-nfcri.1 𝑥𝐴
Assertion
Ref Expression
bj-nfcri 𝑥 𝑦𝐴
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem bj-nfcri
StepHypRef Expression
1 bj-nfcri.1 . . 3 𝑥𝐴
21bj-nfcrii 32826 . 2 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
32nf5i 2022 1 𝑥 𝑦𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1706  wcel 1988  wnfc 2749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clel 2616  df-nfc 2751
This theorem is referenced by:  bj-nfnfc  32828
  Copyright terms: Public domain W3C validator