Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfdt0 Structured version   Visualization version   GIF version

Theorem bj-nfdt0 32380
Description: A theorem close to a closed form of nf5d 2115 and nf5dh 2023. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-nfdt0 (∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → (∀𝑥𝜑 → Ⅎ𝑥𝜓))

Proof of Theorem bj-nfdt0
StepHypRef Expression
1 alim 1735 . 2 (∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → (∀𝑥𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)))
2 nf5 2113 . 2 (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓))
31, 2syl6ibr 242 1 (∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → (∀𝑥𝜑 → Ⅎ𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1478  wnf 1705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-12 2044
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1702  df-nf 1707
This theorem is referenced by:  bj-nfdt  32381
  Copyright terms: Public domain W3C validator