Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfnfc Structured version   Visualization version   GIF version

Theorem bj-nfnfc 33080
 Description: Remove dependency on ax-ext 2704 (and df-cleq 2717) from nfnfc 2876. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-nfnfc.1 𝑥𝐴
Assertion
Ref Expression
bj-nfnfc 𝑥𝑦𝐴

Proof of Theorem bj-nfnfc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2855 . 2 (𝑦𝐴 ↔ ∀𝑧𝑦 𝑧𝐴)
2 bj-nfnfc.1 . . . . 5 𝑥𝐴
32bj-nfcri 33079 . . . 4 𝑥 𝑧𝐴
43nfnf 2269 . . 3 𝑥𝑦 𝑧𝐴
54nfal 2264 . 2 𝑥𝑧𝑦 𝑧𝐴
61, 5nfxfr 1892 1 𝑥𝑦𝐴
 Colors of variables: wff setvar class Syntax hints:  ∀wal 1594  Ⅎwnf 1821   ∈ wcel 2103  Ⅎwnfc 2853 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-clel 2720  df-nfc 2855 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator